Sintezės metodas ir medžiaga 2018 m.

Get Started. It's Free
or sign up with your email address
Rocket clouds
Sintezės metodas ir medžiaga 2018 m. by Mind Map: Sintezės metodas ir medžiaga 2018 m.

1. Komanda X (Ramūnas)

1.1. YAG

1.1.1. Kietafazė sintezė

1.1.2. Zolių

1.1.3. kIETAFAZĖ2

2. A komanda (Karolis, Gintarė, Emilija, Justinas)

2.1. YAG

2.1.1. Co-precipitation

2.1.1.1. Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders: the effect of precipitant

2.1.2. Solvothermal

2.1.2.1. Synthesis of monodisperse and spherical YAG nanopowder by a mixed solvothermal method

2.1.3. Spray-pyrolysis

2.1.3.1. Morphology control and luminescence properties of YAG:Eu phosphors prepared by spray pyrolysis

2.1.4. Sol-gel

2.1.4.1. Luminescence properties of Tb3+:Y3Al5O12 nanocrystallites prepared by the sol–gel method

2.1.4.2. Synthesis of yttrium aluminium garnet by the citrate gel process

2.1.4.3. Sol-gel preparation and electrical behaviour of Ln: YAG (Ln = Ce, Nd, Ho, Er)

2.1.4.4. Low temperature synthesis of nanocrystalline Y3Al5O12 (YAG) and Ce-doped Y3Al5O12via different sol–gel methods

2.1.5. Sol-gel combustion

2.1.5.1. Synthesis and Characterization of Ce-Doped Y3Al5O12 (YAG:Ce) Nanopowders Used for Solid-State Lighting

2.1.5.2. Synthesis of YAG phase by a citrate–nitrate combustion technique

2.1.6. Solid state

2.1.6.1. Fabrication of Polycrystal line, Transparent YAG Ceramics by a Solid-State Reaction Method

3. Komanda 4 (Andrius, Greta, Andrija, Rūta)

3.1. YAG:Ce

3.1.1. Microwave

3.1.1.1. Microwave assisted synthesis of nanocrystalline YAG

3.1.2. Sol-gel

3.1.2.1. Scattering-Based Hole Burning in Y3Al5O12:Ce3+ Monoliths with Hierarchical Porous Structures Prepared via the Sol–Gel Route

3.1.2.2. Effect of different annealing atmospheres on the structural and luminescence properties of Ce3+-doped YAG phosphors synthesized by sol–gel method - ScienceDirect

3.1.3. 2 sol-gel, solid state

3.1.3.1. Low temperature synthesis of nanocrystalline Y3Al5O12 (YAG) and Ce-doped Y3Al5O12via different sol–gel methods - Journal of Materials Chemistry (RSC Publishing)

3.1.4. Co-precipitation

3.1.4.1. Temperature Quenching of Yellow Ce3+ Luminescence in YAG:Ce

3.1.4.2. Co-precipitation Synthesis and Photoluminescence of YAG:Ce Phosphors

3.1.5. Solvothermal

3.1.5.1. Nano-YAG:Ce Mechanisms of Growth and Epoxy-Encapsulation

3.1.5.2. YAG:Ce nano-sized phosphor particles prepared by a solvothermal method

3.1.6. Hydrothermal

3.1.6.1. Luminescent properties of YAG:Ce3+ phosphor powders prepared by hydrothermal-homogeneous precipitation method

3.1.6.2. Bright YAG:Ce Nanorod Phosphors Prepared via a Partial Wet Chemical Route and Biolabeling Applications

3.1.7. Solid state, co-precipitation, sol–gel, combustion method with urea

3.1.7.1. Comparative investigation on synthesis and photoluminescence of YAG:Ce phosphor

3.1.8. sol–gel thin films

3.1.8.1. Structural characterizations and waveguiding properties of YAG thin films obtained by different sol–gel processes

3.1.9. Citrate sol-gel combustion

3.1.9.1. Citrate sol-gel combustion preparation and photoluminescence properties of YAG:Ce phosphors

3.1.9.2. Phase evolution of YAG powders obtained by gel combustion combined with field-assisted rapid synthesis technique

3.1.10. Solid-state

3.1.10.1. Fabrication, optical and scintillation properties of transparent YAG:Ce ceramics

4. Komanda B(Rokas, Liudvika, Edvardas, Justas)

4.1. YAG

4.1.1. Konusodinimas

4.1.1.1. Synthesis of YAG powders by the co-precipitation method

4.1.1.2. Synthesis of YAG nanopowder by the co-precipitation method: Influence of pH and study of the reaction mechanisms

4.1.1.3. Synthesis of cubic yttrium aluminum garnet (YAG) powders by co-precipitation and two-step calcinations

4.1.2. sol-gel

4.1.2.1. Low temperature synthesis of nanocrystalline Y3Al5O12 (YAG) and Ce-doped Y3Al5O12via different sol–gel methods

4.1.2.2. Low temperature synthesis of YAG:Ce phosphors by LiF assisted sol–gel combustion method

4.1.2.3. Synthesis of yttrium aluminium garnet by the citrate gel process

4.1.3. Solvoterminė

4.1.3.1. Solvothermal nanoYAG synthesis: Mechanism and particle growth kinetics

4.1.4. mechanocheminė (ball milling)

4.1.4.1. Mechanochemical solid reaction of yttrium oxide with alumina leading to the synthesis of yttrium aluminum garnet

4.1.5. Kietafazė

4.1.5.1. Synthesis of YAG phosphor particles with excellent morphology by solid state reaction

4.1.6. Glycothermal

4.1.6.1. Synthesis of Yttrium Aluminum Garnet by the Glycothermal Method

4.1.7. liquid - phase

4.1.7.1. Synthesis of Yttrium Aluminum Garnet from a Mixed‐Metal Citrate Precursor

4.1.7.2. FORMATION OF ALKOXY-DERIVED YTTRIUM ALUMINUM-OXIDES

5. Aaaalfa komanda (Augustas, Deividas, Lukas, Radvilė)

5.1. GdPO4

5.1.1. hidroterminė

5.1.1.1. Urchin-like GdPO4 and GdPO4:Eu3+ hollow spheres – hydrothermal synthesis, luminescence and drug-delivery properties - Journal of Materials Chemistry (RSC Publishing)

5.1.1.2. Mutifuntional GdPO4:Eu3+ Hollow Spheres: Synthesis and Magnetic and Luminescent Properties

5.1.1.3. A Novel 3D Architecture of GdPO4 Nanophosphors: Multicolored and White Light Emission

5.1.2. Tiesioginis išgarinimas

5.1.2.1. http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=10&SID=E3xpneN8a3tV7BaTQV6&page=1&doc=2

5.2. YPO4

5.2.1. kietafazė

5.2.1.1. Soft Chemistry Routes to YPO4-Based Phosphors:  Dependence of Textural and Optical Properties on Synthesis Pathways

5.2.2. konusodinimas

5.2.2.1. Soft Chemistry Routes to YPO4-Based Phosphors:  Dependence of Textural and Optical Properties on Synthesis Pathways

5.2.3. tiesioginė oksido-rūgšties r-ja

5.2.3.1. Soft Chemistry Routes to YPO4-Based Phosphors:  Dependence of Textural and Optical Properties on Synthesis Pathways

5.2.4. sol-gel

5.2.4.1. Soft Chemistry Routes to YPO4-Based Phosphors:  Dependence of Textural and Optical Properties on Synthesis Pathways

5.2.5. hidroterminė

5.2.5.1. Hydrothermal synthesis of blue-emitting YPO4:Yb3+ nanophosphor

6. Komanda Y (Iveta, Dovydas, Kastytis, Lukas)

6.1. YPO4

6.1.1. Sol-Gel

6.1.1.1. Sol gel synthesis and pH effect on the luminescent and structural properties of YPO4: Pr3+ nanophosphors

6.1.2. Polyol metodas

6.1.2.1. Luminescence switching in Ce3+ ion sensitized YPO4:Tb3+ through Redox reaction

6.1.3. Hidroterminė

6.1.3.1. YPO4 nanocrystals: preparation and size-induced lattice symmetry enhancement

6.1.3.2. Temperature dependent morphology variation of red emitting microcrystalline YPO4:Eu3+ fabricated by hydrothermal method

6.1.3.3. Photoluminescence behavior of YPO4:Tb3+ crystallized in monoclinic, hexagonal or tetragonal phase obtained by hydrothermal process

6.1.3.4. CTAB assisted hydrothermal preparation of YPO4:Tb3+ with controlled morphology, structure and enhanced photoluminescence

6.1.3.5. Effects of different organic additives on the formation of YPO4:Eu3+ nano-/microstructures under hydrothermal conditions with enhanced photoluminescence

6.1.3.6. Glycine-assisted hydrothermal synthesis of YPO4:Eu3+ nanobundles

6.1.4. Konusodinimas

6.1.4.1. Influence of pH value on properties of YPO4:Tb3+ phosphor by co-precipitation method

6.1.5. Kietafazė

6.1.5.1. Synthesis and Optical Spectroscopy of YPO4:Eu3+ Orange–Red Phosphors

6.1.5.2. Luminescence and charge carrier trapping in YPO4:Bi

6.1.6. Mikrobangos

6.1.6.1. CO2 gas sensing response of YPO4 nanobelts produced by a colloidal method

6.1.7. Wet-chemical route

6.1.7.1. Structure-induced change of luminescent properties in the hydrated and dehydrated YPO4:Tb

6.2. Y2BaZnO5

6.2.1. Kietafazė

6.2.1.1. I. Etchart, Metal oxides for efficient infrared to visible upconversion. Summary of doctoral dissertation, university of Cambridge, Cambridge, 2010

6.2.2. Hidroterminė

6.2.2.1. Y2BaZnO5:Er3+ microcapsules with enhanced upconversion by vanadium ion codoping

6.2.3. Pechini sol-gel metodas

6.2.3.1. I. Etchart, Metal oxides for efficient infrared to visible upconversion. Summary of doctoral dissertation, university of Cambridge, Cambridge, 2010

6.2.4. Savaiminio užsiliepsnojimo

6.2.4.1. Synthesis and luminescence of La2BaZnO5 phosphor

6.3. GdPO4

6.3.1. Kietafazė

6.3.1.1. Downconversion and upconversion emissions of GdPO4:Yb3+/Tb3+ and its potential applications in solar cells

6.3.1.2. Alkali metal ion co-doped Eu3+ activated GdPO4 phosphors: Structure and photoluminescence properties

6.3.2. Hidroterminė

6.3.2.1. GdPO4:Er3+/Yb3+ nanorods: Hydrothermal synthesis and sensitivity of green emission to Yb3+ concentration

6.3.2.2. https://www.sciencedirect.com/science/article/pii/S0022369717310843

6.3.3. Konusodinimas

6.3.3.1. GdPO4:Eu3+ nanoparticles with intense orange red emission suitable for solar spectrum conversion and their multifunctionality