Cell differences

Get Started. It's Free
or sign up with your email address
Rocket clouds
Cell differences by Mind Map: Cell differences

1. 1. Microbial Diversity

1.1. Temperature

1.1.1. -20 degree (in a brine to prevent freezing)

1.1.2. 110 degree (water is under enough P to prevent boiling)

1.1.3. Psychrophiles - below 20

1.1.4. Mesophiles - between 20 - 50

1.1.5. Thermophiles - above 50

1.2. pH

1.2.1. Mostly in neutral

1.2.2. 1-2 // 9

1.2.3. Some able to grow at low pH, high T

1.3. Aw

1.3.1. Mostly in high aw

1.3.2. Barely moist sold surface

1.3.3. In solution with high salt concentration

1.4. Nutrient

1.4.1. Cyanobacteria (blue green algae) - less moisture & few dissolved bacteria

1.4.2. Photosynthesic

1.4.3. Can convert CO2 > organic compound

1.4.4. Can convert NH2 > NH3

1.5. Wide variety of habitats

1.5.1. Provide important tools for processes to make useful chemicals and medicinal

1.5.2. Key to maintenance of natural cycles

1.5.3. Used in the recovery of metals from low-grade ores or in the desulfurization of coal or fuels

1.5.4. Tremendous ability to exist and develop in almost any environment

1.6. Cell morphology

1.6.1. Coccus

1.6.2. Bacillus

1.6.3. Spirilium

1.6.4. Pleomorphic cell

2. 2. Taxonomy

2.1. Classification

2.2. Critical role in patent litigation

3. 3. Viruses

3.1. Not a free living organism

3.2. Very small

3.3. Nuclear material coated with capsid

3.4. Contain DNA or RNA

3.5. Lytic or lysogenic cycle

3.6. Common contaminant of mirobial fermentation ( lactic acid & acetone-butanol F )

3.7. Bacteriophage

3.7.1. Virus that infects bacteria cell

3.7.2. Used as a vector in gene cloning

4. 4. Procaryotes

4.1. Characteristics

4.1.1. Grow rapidly

4.1.2. Utilize nutrients from C sources

4.1.2.1. Carbs, hydocarbon, proteins, CO2

4.2. Groups

4.2.1. 1. Eubacteria

4.2.1.1. ex : Mycoplasma, Actinomycetes

4.2.2. 2. Archaebacteria

4.3. Structure

4.3.1. Ribosome

4.3.1.1. Protein synthesis

4.3.2. Storage granules

4.3.2.1. Source of metabolites

4.3.2.2. Contain polysaccharides, lipids & sulphur granules

4.3.3. Spores

4.3.3.1. Endospore produced as a resistance to adverse condition

4.3.3.1.1. ex : high temp, radiation, toxic

4.3.3.2. 1 spore per cell

4.3.3.3. Germinate under favourable growth condition

4.3.4. Volutin

4.3.4.1. Inorganic metaphosphate

4.3.5. Chromatophores

4.3.5.1. Photosynthetic bacteria

4.3.5.2. Utilize for light absorption

4.3.6. Capsules

4.3.6.1. A polysaccharide or polypeptide

4.3.6.2. Extracurricular polymers important for biofilm formation & response to environmental changes

4.4. Groups

4.4.1. 1. Eubacteria

4.4.1.1. True bacteria

4.4.1.2. Gram stain

4.4.1.3. Ex

4.4.1.3.1. Mycoplasma

4.4.1.3.2. Actinomycetes

4.4.2. 2. Archaebacteria

4.4.2.1. Identical to eubacteria but differs greatly at molecular level

4.4.2.2. Diff : no peptidoylcans, nucleotide sequence in rDNA, lipid composition

4.4.2.3. Live in extreme env & posses unusual metabolism

4.4.2.3.1. Methanogens

4.4.2.3.2. Thermophiles

4.4.2.3.3. Halophiles

5. 5. Eucaryotes

5.1. Characteristic

5.1.1. Cell wall and membrane are similar with procaryotes

5.1.1.1. Variation in cell wall

5.1.1.1.1. -peptidoglycan layer

5.1.1.1.2. -polysach & cellulose (algae)

5.1.1.1.3. -cellulose embedded in pectin aggregates (plant)

5.1.1.1.4. -some do not have cell wall (animal)

5.1.2. Plasma membrane is made of proteins and phospholipids

5.1.3. Major membrane proteins are hydrophobic embedded in phospholipidmatrix

5.1.4. Presence of sterols –strengthen structure and make membrane less flexible

5.2. Structure

5.2.1. Nucleus

5.2.2. Mitochondria

5.2.3. Endoplasmic reticulum

5.2.4. Lysozomes

5.2.5. Peroxisomes

5.2.6. Golgi bodies

5.2.7. Vacoules

5.2.8. Chloroplast

5.3. Groups

5.3.1. Fungi

5.3.1.1. Yeast

5.3.1.1.1. Single, small cell

5.3.1.1.2. Reproduction

5.3.1.1.3. Classification

5.3.1.1.4. ex : Saccharomyces cerevisiae

5.3.1.2. Molds

5.3.1.2.1. Filamentous fungi

5.3.1.2.2. Mycellium

5.3.1.2.3. Reproduce

5.3.1.2.4. Easily grow on moist, solid nutrient surfaces

5.3.1.2.5. When grown in submerged culture, mold forms cell aggregates and pellets

5.3.1.3. Based on reproduction, fungi are grouped....

5.3.1.3.1. Phycomycetes

5.3.1.3.2. Ascomycetes

5.3.1.3.3. Basidiomycetes

5.3.1.3.4. Deutromycetes

5.3.2. Algae

5.3.2.1. Contain silica or calcium carbonate in cell wall, used as filter aids in industry

5.3.2.2. Algae (Chlorella, Scenedesmus, Spirulina and Dunaliela) are used for waste-water treatment with simultaneous single-cell protein production.

5.3.2.3. Gelling agents (agar and alginicacid) are obtained from marine algae and seaweeds

5.3.3. Protozoa

5.3.3.1. Unicellular, motile, lack of cell wall

5.3.3.2. Obtain food by ingesting other small organism

5.3.3.3. Asexual / sexual

5.3.3.4. Classification

5.3.3.4.1. Amoeba

5.3.3.4.2. Flagellates

5.3.3.4.3. Cilia

5.3.3.4.4. Sporozoans

5.3.3.5. Cause disease : malaria, dysentery

5.3.3.6. Beneficial role to remove bacteria from waste water

5.3.4. Animal cell

5.3.5. Plant cell

6. How cells grow?

6.1. Batch growth

6.1.1. Cell number density

6.1.1.1. Hemocytometer

6.1.1.2. Plate count

6.1.1.3. Particles counter

6.1.2. Cell mass concentration

6.1.2.1. Cellular dry weight

6.1.2.2. Optical density

6.1.2.3. Indirect method

6.2. Growth patterns & kinetics

6.2.1. *graph LA LO STATION D

6.2.2. *formula

6.2.3. Env condition that affects...

6.2.3.1. Temp

6.2.3.1.1. As T increase toward Topt, dX/dt doubles for every 10oC increase dX/dt= (µ -k’d)x(above optimal T)

6.2.3.1.2. µ = Ae^(-Ea/RT); k’d= A’e^(-Ed/RT) (Ea< Ed)

6.2.3.1.3. Thermal death is more sensitive to T

6.2.3.2. pH

6.2.3.2.1. Acceptable pH varies about pHopt by ±1-2 pH units (Bacteria = 3-8, Yeast = 3-6, Molds = 3-7, Plant cells = 5-6, Animal cells = 6.5-7.5)

6.2.3.2.2. pH changes-acid –base addition to control

6.2.3.3. Dissolved [O2]

6.2.3.3.1. Aerobic fermentation

6.2.3.3.2. Limiting substrate (sparingly soluble in water)

6.2.3.3.3. At high [cell], rate O2 consumption > rate O2 supply (O2 limitation)

6.2.3.3.4. COC

6.2.3.3.5. Supplied to fermentation broth by AIR SPARGING

6.2.3.3.6. O2 transfer from gas bubbles to cell is limited by liquid film surrounding

6.2.3.3.7. OTR = NO2 = kL a (C*-CL)

6.2.3.3.8. OUR = qO2X = µX / (YX/O2)

6.2.3.3.9. When O2transfer is rate-limiting step : OUR = OTR

6.2.3.3.10. Substrate-limiting substrate. –Monod Equation