Коши Огюстен Луи

Get Started. It's Free
or sign up with your email address
Rocket clouds
Коши Огюстен Луи by Mind Map: Коши Огюстен Луи

1. Образования

1.1. Образования

1.1.1. В 1802 Коши поступил в Центральную школу в Париже, где изучал главным образом древние языки. В 1805 сдал вступительный экзамен в Центральную школу общественных наук Пантеона (переименованную впоследствии в Политехническую школу). Профессорами были лучшие ученые того времени; многие выпускники школы рано начали карьеру и стали знаменитыми учеными. Окончив школу, Коши поступил в Институт путей сообщения. После его окончания в 1810 году, по назначению правительства, работал в качестве инженера строительства морских портов. По-видимому, тогда он посвящал много времени королеве наук – математике, так как уже в 1811 году представил академии наук в Париже работу по теории многогранников, обратившую на него внимание парижских учёных.

2. Работа

2.1. С 1813 Коши начал публиковать работы по математике и, довольно, быстро приобрёл известность и авторитет в среде математиков. В 1816 был назначен членом Парижской Академии наук вместо Г.Монжа, уволенного по политическим причинам. В том же году работа Коши по теории волн на поверхности тяжелой жидкости получила первую премию на конкурсе по математике, и его автор был приглашен в качестве преподавателя сразу в три учебных заведения – Политехническую школу, Сорбонну и Коллеж де Франс.

3. "Его интересы отличались необычайной разносторонностью. Он написал более семисот математических работ, уступив по числу их лишь Эйлеру. Современное издание Коши вышло в двадцати шести томах и охватывает все разделы математики." Моррис Клайн

4. Интересные факт

4.1. "В 1822 году Михаила Васильевича Остроградского посадили в парижскую долговую тюрьму по требованию хозяина гостиницы, которому он сильно задолжал. Пребывая в тюрьме, Остроградский написал работу по теории волн в сосуде цилиндрической формы и послал её на рассмотрение Коши. Тот не отверг работу и не затерял её, а одобрил и добился опубликования в Трудах Парижской академии наук. Более того, он выкупил Михаила Васильевича из тюрьмы, не будучи уже очень богатым, и порекомендовал его на должность преподавателя в лицее. А, казалось бы, странным: убеждённый клерикал выручил бывшего студента Харьковского университета, лишённого диплома за вольнодумство и непосещение лекций по богословию. Было ли это проявлением неосведомленности Коши в вопросах политических взглядов русского математика, трудно сказать."

5. образ жизни

5.1. Реакционный политический климат, царивший в стране до 1830 года, идеально устраивал Коши. В 1824 году умер Луи XVIII, но его наследник Карл X был ещё более реакционен. Эти годы были очень продуктивными для Коши, он публикует одну серьёзную математическую работу за другой. Он получает назначения на работу в Коллеж де Франс и на Факультет наук в Университете.

5.1.1. Однако в июле 1830 года во Франции вспыхивает новая революция. Карл X бежит из страны, на престол восходит король Луи Филипп I, а Коши получает угрозы от революционно настроенных студентов Политехнической школы. Эти события наложили серьёзный отпечаток на всю его дальнейшую жизнь и существенно подорвали его математическую трудоспособность. Коши покидает семью и уезжает из Парижа за границу. После короткого пребывания в Швейцарии он принимает окончательное решение об отказе служить новому королю Франции и лишается всех постов на родине, за исключением членства в Академии Наук, для которого не требовалась присяга. В 1831 году Коши уезжает в итальянский город Турин, где по просьбе короля Сардинии с 1832 по 1833 годы преподаёт в университете теоретическую физику. В 1831 году он также становится иностранным членом Академии Наук Швеции.

5.1.1.1. В 1833 году Коши переезжает в Прагу, где занимается обучением внука сбежавшего французского короля Карла X, за что и был произведён последним в бароны. В 1834 году в Прагу приезжает жена и дочери Огюстена Луи. Семья вновь воссоединилась после четырёх лет разлуки.

5.1.1.1.1. В 1836 году умер Карл Х. В 1838 году Коши вернулся в Париж, но не пожелал из-за своей неприязни к новому режиму занять никаких государственных должностей. Он ограничился преподаванием в иезуитском колледже. С тех пор ученый жил в Париже, занимаясь математикой.

6. Работы Огюстен Луи Коши

6.1. Коши написал более 700 трудов. Этому благоприятствовала не только трудолюбие Коши и гениальность его ума, но и внимание к его работам со стороны современников. В богатом научном наследии Коши, есть работы различного типа из разных отделов математики. В них он представил результаты своих собственных исследований, отчеты о работах, присылаемых в Академию, и результаты дидактической деятельности – превосходные учебники математического анализа, которые стали образцом научного мышления для последующих поколений математиков.

7. непрерывности функции

7.1. Коши впервые дал четкое определение основным понятиям математического анализа – пределу, непрерывности функции, сходимости ряда и т.д. Он установил точные условия сходимости ряда Тейлора к данной функции и провел различие между сходимостью этого ряда вообще и его сходимостью к данной функции. Ввел понятие радиуса сходимости степенного ряда, дал определение интеграла как предела сумм, доказал существование интегралов от непрерывных функций. Нашел выражение аналитической функции в виде интеграла по контуру (интеграл Коши) и вывел из этого представления разложение функции в степенной ряд. Таким образом, он развил теорию функций комплексного переменного: используя интеграл по контуру, нашел разложение функции в степенной ряд, определил радиус сходимости этого ряда, разработал теорию вычетов, а также ее приложения к различным вопросам анализа и т.д. В теории дифференциальных уравнений Коши впервые поставил общую задачу о нахождении решения дифференциального уравнения с заданными начальными условиями (называемую с тех пор задачей Коши), дал способ интегрирования дифференциальных уравнений в частных производных первого порядка. Коши занимался также геометрией (теорией многогранников, поверхностями 2-го порядка), алгеброй (симметрическими многочленами, свойствами определителей), теорией чисел (теоремой Ферма о многоугольных числах, законом взаимности). Ему принадлежат исследования по тригонометрии, механике, теории упругости, оптике, астрономии.

8. Коши был членом Лондонского королевского общества

8.1. Коши был членом Лондонского королевского общества, Петербургской академии наук и ряда других академий Европы.

9. Имя Коши носят следующие математические объекты

9.1. задача Коши

9.2. интеграл Коши

9.3. интегральная формула Коши

9.4. интегральная теорема Коши

9.5. критерий Коши о равномерной сходимости ряда

9.6. критерий Коши о сходимости числовой последовательности

9.7. неравенство Коши – Буняковского

9.8. неравенство Коши (между средним арифметическим и средним геометрическим)

9.9. последовательность Коши

9.10. признак Коши

9.11. теорема Коши о многогранниках

9.12. условие Коши

9.13. формула Коши

9.14. формула Коши–Адамара

9.15. неравенство Коши–Шварца

9.16. теорема Коши–Ковалевской

9.17. теорема Больцано–Коши

9.18. распределение Коши

9.19. уравнение Коши–Римана.