Get Started. It's Free
or sign up with your email address
Rocket clouds
SET by Mind Map: SET

1. เอกภพสัมพัทธ์

1.1. เซตที่ถูกกำหนดขึ้นโดยมีข้อตกลงว่า จะกล่าวถึงสิ่งที่เป็นสมาชิกของเซตนี้เท่านั้น จะไม่กล่าวถึงสิ่งอื่นใดที่ไม่เป็นสมาชิกของเซตนี้

1.2. โดยทั่วไปจะใช้สัญลักษณ์ U แทนเซตที่เป็นเอกภพสัมพัทธ์

2. วิธีการเขียนเซต

2.1. วิธีแจกแจงสมาชิก (Tubular form)

2.1.1. เขียนสมาชิกทั้งหมดในวงเล็บปีกกา

2.1.2. สมาชิกแต่ละตัวคั่นด้วยเครื่องหมายจุลภาค (,)

2.1.3. สมาชิกที่ซ้ำกันให้เขียนเพียงตัวเดียว

2.1.4. ในกรณีที่จำนวนสมาชิกมากๆ ให้เขียนสมาชิกอย่างน้อย3 ตัวแรก แล้วใช้จุด3 จุด แล้วจึงเขียนสมาชิกตัวสุดท้าย

2.2. วิธีบอกเงื่อนไขของสมาชิก (Set builder form

2.2.1. เขียนเซตด้วยวงเล็บปีกกา

2.2.2. กำหนดตัวแปรแทนสมาชิกทั้งหมดตามด้วยเครื่องหมาย | ( | อ่านว่า "โดยที่") แล้วตามด้วยเงื่อนไขของตัวแปรนั้น ดังรูปแบบ {x | เงื่อนไขของ x}

2.3. สัญลักษณ์ที่ใช้แทนเซตจำนวน

2.3.1. N = เซตของจำนวนนับ

2.3.2. I+ = เซตของจำนวนเต็มบวก (จำนวนนับ)

2.3.3. I- = เซตของจำนวนเต็มลบ

2.3.4. I = เซตของจำนวนเต็ม

2.3.5. Q = เซตของจำนวนตรรกยะ

2.3.6. Q' = เซตของจำนวนอตรรกยะ

2.3.7. R+ = เซตของจำนวนจริงบวก

2.3.8. R- = เซตของจำนวนจริงลบ

2.3.9. R = เซตของจำนวนจริง

3. เซตจำกัด เซตอนันต์

3.1. เซตจำกัด (Finite Set)

3.1.1. เซตที่สามารถนับจำนวนสมาชิกได้ทั้งหมดและมีจำนวนที่แน่นอน

3.2. เซตอนันต์ (Infinite Set)

3.2.1. เซตที่ไม่สามารถบอกจำนวนสมาชิกได้เพราะสมาชิกมีจำนวนมาก

4. สับเซตและเพาเวอร์เซต

4.1. สับเซต

4.1.1. ถ้าสมาชิกทุกตัวของ A เป็นสมาชิกของ B แล้ว จะเรียกว่า A เป็นสับเซตของ B จะเขียนว่า A ⊂ B

4.1.2. สมบัติของสับเซต

4.1.2.1. A ⊂ A (เซตทุกเซตเป็นสับเซตของตัวมันเอง)

4.1.2.2. A ⊂ U (เซตทุกเซตเป็นสับเซตของเอกภพสัมพัทธ์)

4.1.2.3. 3) ø ⊂ A (เซตว่างเป็นสับเซตของทุกๆ เซต)

4.1.2.4. 4) ถ้า A ⊂ ø แล้ว A = ø

4.1.2.5. 5) ถ้า A ⊂ B และ B ⊂ C แล้ว A ⊂ C (สมบัติการถ่ายทอด)

4.1.2.6. 6) A = B ก็ต่อเมื่อ A ⊂ B และ B ⊂ A

4.1.2.7. 7) ถ้า A มีจำนวนสมาชิก n ตัว สับเซตของเซตจะมีทั้งสิ้น 2n สับเซต

4.1.3. สับเซตแท้

4.1.3.1. นิยาม A เป็นสับเซตแท้ของ B ก็ต่อเมื่อ A⊂B และ A ≠ B

4.2. เพาเวอร์เซต (Power Set)

4.2.1. เป็นคำศัพท์เฉพาะ ซึ่งใช้เป็นชื่อเรียกเซตเซตหนึ่งที่เกี่ยวข้องกับเรื่องสับเซต

4.2.2. สมบัติของเพาเวอร์เซต

4.2.2.1. 1) ø ⊂ P(A)

4.2.2.2. 2) A ⊂ P(A

4.2.2.3. 3) P(A) ≠ ø

4.2.2.4. 4) P(A) ⊂ P(B) ก็ต่อเมื่อ A ⊂ B

4.2.2.5. 5) ถ้า A มีสมาชิก n ตัว P(A) จะมีสมาชิก 2n ตัว