Componentes básicos de la arquitectura bioclimática

Get Started. It's Free
or sign up with your email address
Componentes básicos de la arquitectura bioclimática by Mind Map: Componentes básicos de la arquitectura bioclimática

1. Formas de transmisión del calor:

1.1. Conducción. El calor se transmite a través de la masa del propio cuerpo. La facilidad con que el calor «viaja» a través de un material lo define como conductor o como aislante térmico. Ejemplos de buenos conductores son los metales, y de buenos aislantes, los plásticos, maderas, aire. Este es el fenómeno por el cual las viviendas pierden calor en invierno a través de las paredes, lo que se puede reducir colocando un material que sea aislante. El coeficiente de conducción térmica de un material es una medida de su capacidad para conducir el calor.

1.1.1. Convección. Si consideramos un material fluido (en estado líquido o gaseoso), el calor, además de transmitirse a través del material (conducción), puede ser «transportado» por el propio movimiento del fluido. Si el movimiento del fluido se produce de forma natural, por la diferencia de temperaturas (aire caliente sube, aire frío baja), la convección es natural, y si el movimiento lo produce algún otro fenómeno (ventilador, viento), la convección es forzada.

1.2. Radiación. Todo material emite radiación electromagnética, cuya intensidad depende de la temperatura a la que se encuentre. La radiación infrarroja provoca una sensación de calor inmediata (piénsese en una estufa de butano, por ejemplo). El sol nos aporta energía exclusivamente por radiación.

2. Pérdida de calor en viviendas (invierno):

2.1. En el interior de la casa, el calor se transmite entre los paramentos (muros, techos, suelos) principalmente por radiación, y entre los paramentos y el aire interior principalmente por convección. El calor «viaja» a través de los paramentos por conducción, hasta alcanzar el exterior de la casa, donde se disipa por convección y radiación. Para reducir las pérdidas de calor, se actúa principalmente sobre el fenómeno de conducción a través de los paramentos, intercalando una capa de material térmicamente aislante.

3. Microclima y ubicación:

3.1. El comportamiento climático de una casa no solo depende de su diseño, sino que también está influenciado por su ubicación: la existencia de accidentes naturales como montes, ríos, pantanos, vegetación, o artificiales como edificios próximos, etc., crean un microclima que afecta al viento, la humedad, y la radiación solar que recibe la casa.

4. Ubicación:

4.1. La ubicación determina las condiciones climáticas con las que la vivienda tiene que «relacionarse». Podemos hablar de condiciones macroclimáticas y microclimáticas.

4.1.1. Las condiciones macroclimáticas son consecuencia de la pertenencia a una latitud y región determinada. Los datos más importantes que las definen son: Las temperaturas medias, máximas y mínimas La pluviometría La radiación solar incidente La dirección del viento dominante y su velocidad media

5. Forma y orientación La forma de la casa influye sobre:

5.1. La superficie de contacto entre la vivienda y el exterior, lo cual influye en las pérdidas o ganancias caloríficas. Normalmente se desea un buen aislamiento, para lo cual, además de utilizar los materiales adecuados, la superficie de contacto tiene que ser lo más pequeña posible. Para un determinado volumen interior, una forma compacta (como el cubo), sin entrantes ni salientes, es la que determina la superficie de contacto más pequeña. La existencia de patios, alas, etc. incrementan esta superficie.

5.1.1. La resistencia frente al viento. La altura, por ejemplo, es determinante: una casa alta siempre ofrece mayor resistencia que una casa baja. Esto es bueno en verano, puesto que incrementa la ventilación, pero malo en invierno, puesto que incrementa las infiltraciones. La forma del tejado y la existencia de salientes diversos, por ejemplo, también influye en conseguir una casa más o menos «aerodinámica». Teniendo en cuenta las direcciones de los vientos predominantes, tanto en invierno como en verano es posible llegar a una situación de compromiso que disminuya las infiltraciones en invierno e incremente la ventilación en verano. y por último la captación solar.

6. Aislamiento y masa térmica

6.1. La vivienda con elevada masa térmica se comporta manteniendo una temperatura sin variaciones bruscas, relativamente estable frente a las condiciones externas. El objetivo es conseguir que, mediante un buen diseño bioclimático, esta temperatura sea agradable. La masa térmica elevada no es aconsejable en viviendas ocasionales (viviendas de fin de semana, por ejemplo), cuyas condiciones de temperatura son irrelevantes excepto en los momentos en que se ocupan, momentos en los que se requiere calentarlas o enfriarlas rápidamente.

7. Ventilación En una vivienda bioclimática, la ventilación es importante, y tiene varios usos:

7.1. Renovación del aire, para mantener las condiciones higiénicas. Un mínimo de ventilación es siempre necesario. Incrementar el confort térmico en verano, puesto que el movimiento del aire acelera la disipación de calor del cuerpo humano Climatización. El aire en movimiento puede llevarse el calor acumulado en muros, techos y suelos por el fenómeno de convección. Para ello, la temperatura del aire debe ser lo más baja posible. Esto es útil especialmente en las noches de verano, cuando el aire es más fresco. Infiltraciones. Es el nombre que se le da a la ventilación no deseada. En invierno, pueden suponer una importante pérdida de calor. Es necesario reducirlas al mínimo.

8. Trayectoria solar:

8.1. Las estaciones está motivada porque el eje de rotación de la tierra no es siempre perpendicular al plano de su trayectoria de traslación con respecto al sol, sino que forma un ángulo variable dependiendo del momento del año en que nos encontremos.

9. Radiación directa, difusa y reflejada: La radiación directa es, como su propio nombre indica, la que proviene directamente del sol.

9.1. La radiación difusa es aquella recibida de la atmósfera como consecuencia de la dispersión de parte de la radiación del sol en la misma. Esta energía puede suponer aproximadamente un 15% de la radiación global en los días soleados, pero en los días nublados, en los cuales la radiación directa es muy baja, la radiación difusa supone un porcentaje mucho mayor

9.1.1. La radiación reflejada es, como su propio nombre indica, aquella reflejada por la superficie terrestre. La cantidad de radiación depende del coeficiente de reflexión de la superficie, también llamado albedo. Por otra parte, las superficies horizontales no reciben ninguna radiación reflejada, porque no «ven» superficie terrestre, mientras que las superficies verticales son las que más reciben.

10. Capacidad calorífica e inercia térmica:

10.1. Si a un cuerpo le aportamos calor, este eleva su temperatura. Si lo hace lentamente decimos que tiene mucha capacidad calorífica, puesto que es capaz de almacenar mucho calor por cada grado centígrado de temperatura.

11. Confort térmico Muchos tenemos la idea intuitiva de que nuestro confort térmico depende fundamentalmente de la temperatura del aire que nos rodea, y nada más lejos de la realidad.

11.1. Podemos decir que nuestro cuerpo se encuentra en una situación de confort térmico cuando el ritmo al que generamos calor es el mismo que el ritmo al que lo perdemos para nuestra temperatura corporal normal.

12. Efecto invernadero:

12.1. Es el fenómeno por el cual la radiación entra en un espacio y queda atrapada, calentando, por tanto, ese espacio. Se llama así porque es el efecto que ocurre en un invernadero, que es un espacio cerrado por un acristalado. El vidrio se comporta de una manera curiosa ante la radiación: es transparente a la radiación visible (por eso vemos a través de él), pero opaco ante radiación de mayor longitud de onda (radiación infrarroja).

13. Calor de vaporización:

13.1. Cuando un cuerpo pasa de estado líquido a gaseoso, necesita absorber una cantidad de calor que se denomina calor de vaporización. Entonces el agua, al evaporarse, necesita calor, que adquiere de su entorno inmediato, enfriándolo. Por eso los lugares donde hay agua están más frescos.

14. Efecto climático del suelo:

14.1. tiene mucha inercia térmica (ya explicamos lo que es esto), lo que amortigua y retarda las variaciones de temperatura, entre el día y la noche, e incluso entre estaciones. La amortiguación de temperatura que se produce depende de la profundidad y del tipo de suelo. Para amortiguar las variaciones día – noche el espesor debe ser de 20 – 30 cm, para amortiguar las variaciones entre días de distintas temperaturas, espesor de 80 a 200 cm, y para amortiguar variaciones invierno – verano, espesores de 6 – 12 m.

15. Espacios tapón

15.1. Son espacios adosados a la vivienda, de baja utilización, que térmicamente actúan de aislantes o «tapones» entre la vivienda y el exterior. El confort térmico en estos espacios no está asegurado, puesto que, al no formar parte de la vivienda propiamente dicha (el recubrimiento aislante no los incluirá), no disfrutarán de las técnicas adecuadas de climatización, pero como son de baja utilización, tampoco importa mucho. Pueden ser espacios tapón el garaje, el invernadero, el desván… Este último es importante que exista.