Fintech Course Concepts
by Bailie Smith
1. AI Biases
1.1. Interaction Bias
1.2. Latent Bias
1.3. Selection Bias
2. Data Integrity
2.1. Validity
2.2. Completeness
2.3. Accuracy
2.4. Consistency
2.5. Uniformity
3. Limitations on Data
3.1. Garbage-In-Garbage-Out
3.2. Spurious Correlations
3.3. Data Labeling
4. Heuristics
4.1. Anchoring
4.2. Availability
4.3. Representativeness
5. Learning
5.1. Artificial Intelligence
5.2. Supervised
5.3. Unsupervised
5.4. Machine Learning
5.5. Deep Learning
6. Internet of Things
7. Big Data
7.1. Structured
7.2. Unstructured
8. BlockChain
9. 4 Vs of Data
9.1. Volume
9.2. Variety
9.3. Velocity
9.4. Veracity
10. Quantum Computing
11. Cognitive Biases
11.1. Bandwagon
11.2. Choice Supportive
11.3. Confirmation Bias
11.4. Placebo
11.5. Overconfidence
11.6. Survivorship
11.7. Selective
11.8. Blindspot
11.9. Ostrich Bias
12. Data Analytics
12.1. Descriptive
12.2. Predictive
12.3. Diagnostic
12.4. Prescriptive
13. Nudge Theory
14. Regulatory Sandbox
15. Alternative Data
15.1. Web scraping
15.2. Sentiment Analysis
16. Data Platforms
16.1. PowerBI
16.2. Alteryx
16.3. Tableau
17. SAS
17.1. Tidy Data
17.2. Feature Engineering
17.3. Importing Data
17.4. Merging
17.5. Accumulating
17.6. Panel Data
17.7. Visualization