Get Started. It's Free
or sign up with your email address
Rocket clouds
AIMA by Mind Map: AIMA

1. Knowledge representation

1.1. Semantic networks

1.2. Description logics

1.3. Closed-world assumption

1.4. Nonmonotonic logics

1.4.1. Circumscription

1.4.2. Default logic

1.5. Truth maintenance systems

2. NLP/NLU

2.1. n-grams

2.2. Text classification

2.2.1. Naive Bayes n-gram

2.3. Information retrieval

2.3.1. bag of words

2.3.2. Question answering

2.4. Information extraction

2.4.1. FSA

2.4.2. HMMs

2.4.3. Conditional random fields

3. Search

3.1. Uninformed Search

3.1.1. BFS

3.1.2. DFS

3.1.3. Uniform-cost search

3.1.4. Iterative deepening search

3.1.5. Bidirectional search

3.2. Informed (Heuristic Search)

3.2.1. BFS + Eval. function

3.2.2. Greedy BFS

3.2.3. A*

3.2.4. Recursive BFS

3.2.5. SMA*

3.3. Local Search

3.3.1. Hill climbing

3.3.1.1. genetic algorithm

3.3.1.2. tabu search

3.3.2. Linear programming

3.3.3. Convex optimization

3.4. Constraint satisfactioin

3.4.1. Backtracking

3.4.2. Min-conflicts heuristics

3.4.3. Cutset conditioning

3.4.4. Tree decomposition

3.4.5. Constraint propagation

3.5. Adversarial Search

3.5.1. Minimax

3.5.2. Alpha-beta

4. Probabilistic reasoning

4.1. Decision theory

4.2. Full joint probability distributions

4.3. Bayes' rule

4.4. Bayesian networks

4.4.1. Hybrid Bayesian networks

4.4.2. polytrees

4.4.3. Likelihood weighting

4.4.4. Markov chain Monte Carlo

4.4.5. RPMs

4.5. Temporal (over time)

4.5.1. Hidden Markov Models

4.5.2. Kalman filters

4.5.3. dynamic Bayesian networks

4.6. Markov decision processes

4.6.1. Transition model

4.6.2. Reward function

4.7. Game theory

4.7.1. Nash equilibria

5. Learning

5.1. Supervised

5.1.1. Classification

5.1.2. Regression

5.1.3. Loss function

5.1.4. Cross-validation

5.2. Unsupervised

5.3. Reinforcement Learning

5.3.1. Model-based design

5.3.2. Model-free design

5.3.3. Reflex design

5.3.4. Utility

5.3.4.1. Direct utility estimation

5.3.4.2. Adaptive dynamic programming

5.3.4.3. Temporal-difference

6. Reasoning

6.1. Logical agents

6.1.1. Propositional logic

6.1.2. WalkSAT (Local search method)

6.2. First-order logic

6.2.1. Modus Ponens

6.2.2. Forward chaning

6.2.2.1. Datalog

6.2.3. Backward chaning

6.2.3.1. Logic programming systems

6.3. Planning

6.3.1. Determenistic env.

6.3.1.1. PDDL

6.3.1.2. State-space search

6.3.1.2.1. Progression

6.3.1.2.2. Regression

6.3.1.3. Planning graph

6.3.2. Nondetermenistic env.

6.3.2.1. Hierarchical task network (HTN)

6.3.2.2. Contingent plans

6.3.2.3. Online planning agent

6.3.2.4. Multiagent planning