DATA MINING & MACHINE LEARNING RESOURCES

Create a Market Plan for introducing a new product or brand

Get Started. It's Free
or sign up with your email address
Rocket clouds
DATA MINING & MACHINE LEARNING RESOURCES by Mind Map: DATA MINING & MACHINE LEARNING RESOURCES

1. Books

1.1. Applied Data Mining - Statistical Methods for Business and Industry

1.1.1. by Paolo Giudici

1.2. Data Mining Concepts and Techniques

1.2.1. by Jiawei Han and Micheline Kamber

1.3. Data Mining - Practical Machine Learning Tools and Techniques Third Edition

1.3.1. by Ian H. Witten, Eibe Frank, and Mark A. Hall

1.4. Data Mining Techniques - For Marketing, Sales, and Customer Relationship Management, 2nd Edition

1.4.1. by Michael J.A. Berry and Gordon S. Linoff

1.5. Discovering Knowledge in Data - An Introduction to Data Mining

1.5.1. by Daniel T. Larose

1.6. Handbook of Statistical Analysis and Data Mining Applications

1.6.1. by Robert Nisbet, John Elder, and Gary Miner

1.7. Intelligent Data Analysis - An Introduction

1.7.1. by Daniel T. Larose

1.8. Introduction to Data Mining

1.8.1. by Kumar, Steinbach and Tan

1.9. Making Sense of Data II - A Practical Guide to Data Visualization, Advanced Data Mining Methods, and Applications

1.9.1. by Glenn J. Myatt and Wayne P. Johnson

1.10. Mining the Web: Transforming Customer Data into Customer Value

1.10.1. by Gordon S. Linoff and Michael J.A. Berry

2. Free Ebooks

2.1. A Programmer's Guide to Data Mining

2.1.1. Download link

2.2. An Introduction to Genetic Algorithms

2.2.1. Download link

2.3. Data Mining for the Masses

2.3.1. Download link

2.4. CRISP-DM 1.0

2.4.1. Download link

2.5. Data Jujitsu: The Art of Turning Data into a Product

2.5.1. Download link

2.6. Deep Learning

2.6.1. Download link

2.7. Deep Learning Methods and Applications

2.7.1. Download link

2.8. Deep Learning Tutorial, Release 1.0

2.8.1. Download link

2.9. Introduction to Information Retrieval

2.9.1. Download link

2.10. KB - Neural Data Mining with Python Source

2.10.1. Download link

2.11. Machine Learning Cheatsheet

2.11.1. Download link

2.12. Neural Networks and Deep Learning

2.12.1. Download link

2.13. Prolog for Programmers

2.13.1. Download link

2.14. Social Media Mining: An Introduction

2.14.1. Download link

2.15. Social Media Mining, An introduction

2.15.1. Download link

2.16. The Elements of Statistical Learning - Data Mining, Inference, and Prediction

2.16.1. Download link

2.17. Top 10 Algorithms in Data Mining

2.17.1. Download link

3. Open Source Publications Sites

3.1. InTech

3.1.1. Link

4. OPEN SOURCE DS/DM/PA/ML SOFTWARE

4.1. R

4.1.1. Website link

4.1.2. Tutorial Sites

4.1.2.1. R Tutorial

4.1.2.2. R-tutorials

4.1.2.3. R tutorial to statistical models

4.1.2.4. Beginner's guide to R: Introduction

4.1.2.5. Resources to help you learn and use R

4.1.2.6. Online R resources for Beginners

4.1.2.7. Getting Started with the R Data Analysis Package

4.1.2.8. Free R tutorials

4.1.2.9. Quick-R

4.1.2.10. Getting started with R

4.1.3. Tutorial EBooks & Pdf

4.1.3.1. An Introduction to R

4.1.3.2. R for Beginners

4.1.3.3. University of North Texas

4.1.3.3.1. R - Statistical and Graphical Software Notes

4.1.3.4. University of California, Davis

4.1.3.4.1. R for Programmers

4.1.3.5. Florida State University

4.1.3.5.1. R programming basics

4.1.3.6. University of California, Santa Barbara

4.1.3.6.1. R: A self-learn tutorial

4.1.3.7. University of Notre Dame

4.1.3.7.1. Introduction to R

4.1.3.8. University of Auckland

4.1.3.8.1. R Programming Basic Concepts

4.1.3.9. Duke University

4.1.3.9.1. Brief R Tutorial

4.1.3.10. University of Warwick

4.1.3.10.1. Programming Exercises for R

4.1.3.11. University of Washington

4.1.3.11.1. R Fundamentals and Programming Techniques

4.1.3.12. University of California, Berkeley

4.1.3.12.1. An Introduction to R

4.1.4. Tutorial Videos

4.1.4.1. Stanford University

4.1.4.1.1. Introduction to R Programming Part 1

4.1.4.1.2. introduction to R programming part 2

4.1.4.2. University of Colorado Denver

4.1.4.2.1. R Basics

4.1.4.2.2. Importing Data

4.1.4.2.3. Basic analysis

4.1.4.2.4. Plotting

4.1.4.2.5. Installing Packages

4.1.4.3. Texas A&M University

4.1.4.3.1. R videos

4.1.4.4. An Introduction to R

4.1.4.4.1. A Brief Tutorial for R

4.1.5. Tutorial ppt

4.2. Python

4.2.1. Website link

4.3. Anaconda Python

4.3.1. Website link

4.4. Weka

4.4.1. Website link

4.5. RapidMiner

4.5.1. Website link

4.6. KNIME

4.6.1. Website link

4.7. Orange Canvas

4.7.1. Website link