distribuciones

Comienza Ya. Es Gratis
ó regístrate con tu dirección de correo electrónico
Rocket clouds
distribuciones por Mind Map: distribuciones

1. es una función que asigna a cada suceso definido sobre la variable la probabilidad de que dicho suceso ocurra. La distribución de probabilidad está definida sobre el conjunto de todos los sucesos y cada uno de los sucesos es el rango de valores de la variable aleatoria. También puede decirse que tiene una relación estrecha con las distribuciones de frecuencia. De hecho, una distribución de probabilidades puede comprenderse como una frecuencia teórica, ya que describe cómo se espera que varíen los resultados.

2. la distribución de poisson es una distribución de probabilidad discreta que expresa, a partir de una frecuencia de ocurrencia media, la probabilidad de que ocurra un determinado número de eventos durante cierto período de tiempo. Concretamente, se especializa en la probabilidad de ocurrencia de sucesos con probabilidades muy pequeñas, o sucesos "raros".

3. distribucion normal

3.1. se llama distribución normal, distribución de Gauss o distribución gaussiana, a una de las distribuciones de probabilidad de variable continua que con más frecuencia aparece estadística y teoría de probabilidad

3.1.1. propiedades: Es simétrica respecto de su media, Distribución de probabilidad alrededor de la media en una distribución N(μ, σ2). La moda y la mediana son ambas iguales a la media,

4. distribucion binominal:l es una distribución de probabilidad discreta que cuenta el número de éxitos en una secuencia de n ensayos de Bernoulli independientes entre sí, con una probabilidad fija p de ocurrencia del éxito entre los ensayos. Un experimento de Bernoulli se caracteriza por ser dicotómico, esto es, solo dos resultados son posibles. A uno de estos se denomina «éxito» y tiene una probabilidad de ocurrencia p y al otro, «fracaso», con una probabilidad q = 1 - p.

4.1. formula binominal de probabilidad de r éxitos en n ensayos es : N! / R! (N-R)! PR QN-R Recordemos que el símbolo factorial! Significa por ejemplo que es 3! = 3*2*1 = 6 Los matemáticos definen 0! = 1.

5. propiedades:La función de masa o probabilidad de la distribución de Poisson es donde k es el número de ocurrencias del evento o fenómeno (la función nos da la probabilidad de que el evento suceda precisamente k veces). λ es un parámetro positivo que representa el número de veces que se espera que ocurra el fenómeno durante un intervalo dado. Por ejemplo, si el suceso estudiado tiene lugar en promedio 4 veces por minuto y estamos interesados en la probabilidad de que ocurra k veces dentro de un intervalo de 10 minutos, usaremos un modelo de distribución de Poisson con λ = 10×4 = 40. e es la base de los logaritmos naturales (e = 2,71828...)