Comienza Ya. Es Gratis
ó regístrate con tu dirección de correo electrónico
Rocket clouds
COMUNICACIONES por Mind Map: COMUNICACIONES

1. LINEAS DE TRANSMISIÓN Y ANTENA

1.1. La línea de transmisión más simple que podamos imaginar es la biflar o de dos hilos, que consiste en dos conductores separados por un dieléctrico o aislante. El dieléctrico puede ser aire o un plástico como el que se usa para líneas de transmisión planas en antenas de TV.

1.1.1. Una línea de transmisión biflar abierta en un extremo no va a irradiar porque la corriente en cada cable tiene el mismo valor pero una dirección opuesta, de manera que los campos creados en un punto dado a alguna distancia de la línea se cancelan.

1.2. ANTENA

1.2.1. Si doblamos los extremos abiertos de la línea de transmisión en sentidos opuestos, la corriente va a generar campos eléctricos que están en fase y se refuerzan mutuamente, y, por lo tanto, irradiarán y se propagarán a distancia. Ahora tenemos una antena en un extremo de la línea de transmisión.

1.2.2. El largo de la porción doblada de la línea de transmisión va a determinar la característica de la antena. Si el largo corresponde a un cuarto de la longitud de onda, vamos a tener una antena dipolo de media onda con una ganancia de 2,15 dBi.La presencia de metales en las cercanías va a afectar profundamente el funcionamiento de la línea de transmisión biflar descrita, así que la mejor solución es confnar los campos eléctricos por medio de un conductor externo que proteja el interno.

2. CABLES

2.1. COAXIAL

2.1.1. Los cables coaxiales tienen un conductor central recubierto por un material no conductor denominado dieléctrico, o simplemente aislante. El dieléctrico se recubre con una pantalla conductora envolvente a menudo en forma de malla. El dieléctrico evita una conexión eléctrica entre el conductor central y la pantalla. Finalmente, el coaxial está protegido por un recubrimiento generalmente de PVC. El conductor interior transporta la señal de RF, y la pantalla evita que la señal de RF sea radiada a la atmósfera, así como impide que posibles señales externas interferan con la que está siendo transmitida por el cable.

2.1.2. Aquí les presentamos algunos puntos que se deben considerar cuando elegimos un cable para utilizarlo con dispositivos de microondas:

2.1.2.1. 1. Cuanto más corto mejor La primer regla cuando instalamos un cable es la de hacerlo lo más corto posible

2.1.2.1.1. 2. Cuanto más barato peor La segunda regla de oro es que todo el dinero que se invierta en comprar un cable de buena calidad es un buen negocio.

3. GLOSARIO SOBRE ANTENAS

3.1. Impedancia de entrada

3.1.1. Para una transferencia de energía efciente, la impedancia del radio, la antena, y el cable de transmisión que las conecta debe ser la misma.

3.2. Perdida de retorno

3.2.1. La pérdida de retorno es otra forma de expresar la desadaptación. Es una medida logarítmica expresada en dB, que compara la potencia refejada por la antena con la potencia con la cual la alimentamos desde la línea de transmisión Pi.

3.3. Ancho de Banda

3.3.1. El ancho de banda de una antena se refere al rango de frecuencias FH - FL en el cual puede operar de forma correcta. Este ancho de banda es el número de hercios (Hz) para los cuales la antena va a cumplir ciertos requisitos como presentar una ganancia dentro de los 3 dB de la ganancia máxima, o un VSWR menor que 1.5. El

3.3.2. Directividad y Ganancia

3.3.2.1. La directividad es la habilidad de una antena de transmitir enfocando la energía en una dirección particular, o de recibirla de una dirección particular. Si un enlace inalámbrico utiliza ubicaciones fjas para ambos extremos, es posible utilizar la directividad de la antena para concentrar la transmisión de la radiación en la dirección deseada. En una aplicación móvil, donde el transceptor no está fjado a un punto, es imposible predecir dónde va a estar, y por lo tanto la antena debería radiar en todas las direcciones del plano horizontal.

3.3.2.2. Patrón de radiación

3.3.2.2.1. El patrón de radiación o patrón de antena describe la intensidad relativa del campo radiado en varias direcciones desde la antena a una distancia constante. El patrón de radiación es también de recepción, porque describe las propiedades de recepción de la antena. El patrón de radiación es tridimensional, pero generalmente lo que se publica de este es una porción bidimensional del patrón tridimensional, en el plano horizontal o vertical.

3.3.2.2.2. Ancho de Haz

4. GUIAS DE ONDA

4.1. Arriba de los 2 GHz, la longitud de onda es lo sufcientemente corta como para permitir una transferencia de energía práctica y efciente por diferentes medios. Una guía de onda es un tubo conductor a través del cual se transmite la energía en la forma de ondas electromagnéticas. El tubo actúa como un contenedor que confna las ondas en un espacio cerrado. El efecto de Faraday atrapa cualquier campo electromagnético fuera de la guía. Los campos electromagnéticos son propagados a través de la guía de onda por medio de refexiones en sus paredes internas, que son consideradas perfectamente conductoras. La intensidad de los campos es máxima en el centro a lo largo de la dimensión X, y debe disminuir a cero al llegar a las paredes, porque la existencia de cualquier campo paralelo a las mismas en su superfcie causaría una corriente infnita en un conductor perfecto.

4.1.1. TIPOS DE GUIA : RECTANGULAR Y CIRCULAR

4.1.1.1. La energía puede introducirse o extraerse de una guía de onda por medio de un campo eléctrico o magnético. Generalmente la transferencia de energía se da a través de una línea coaxial. Dos métodos posibles para acoplar una línea coaxial son utilizar el conductor interno de la línea, o a través de una espira. 5. ANTENAS / LÍNEAS DE TRANSMISIÓN 63 Se puede introducir una sonda, constituida por una pequeña extensión del conductor interno de la línea coaxial, orientada paralelamente a las líneas de campo eléctrico. También se puede colocar un lazo o espira que encierre algunas de las líneas de campo magnético. El punto en el cual obtenemos el acoplamiento máximo depende del modo de propagación en la guía o en la cavidad. El acoplamiento es máximo cuando el dispositivo de acoplamiento está en el campo más intenso.

5. CONECTORES Y ADAPTADORES

5.1. TIPOS DE CONECTORES

5.1.1. El tipo BNC es un conector miniatura de conexión y desconexión rápida. Tiene dos postes de bayoneta en el conector hembra, y el apareamiento se logra con sólo un cuarto de vuelta de la tuerca de acoplamiento. Los conectores BNC son ideales para la terminación de cables coaxiales miniatura o subminiatura (RG-58 a RG-179, RG-316, etc.). Tienen un desempeño aceptable hasta unos pocos cientos de MHz.

5.1.2. Los conectores TNC también fueron inventados por Neill y Concelman, y son una versión roscada de los BNC. Debido a que proveen una mejor interconexión por su conector de rosca, funcionan bien hasta unos 12 GHz. Su sigla TNC se debe al inglés (Neill-Concelman con Rosca, por Threaded Neill-Concelman).

5.1.2.1. Los conectores tipo N se pueden utilizar hasta 18 GHz y se utilizan comúnmente en aplicaciones de microondas. Se fabrican para la mayoría de tipos de cable. Las uniones del cable al conector macho o hembra son supuestamente impermeables, lo que da un agarre efectivo.

5.1.2.1.1. SMA es un acrónimo de Sub Miniatura versión A, y fue desarrollado en los 60. Los conectores SMA son unidades subminiatura de precisión que proveen excelentes prestaciones eléctricas hasta más de 18 GHz. Estos conectores de alto desempeño son de tamaño compacto y tienen una extraordinaria durabilidad.

5.2. ADPTADORES

5.2.1. Los adaptadores coaxiales (o simplemente adaptadores), son conectores cortos usados para unir dos cables, o dos componentes que no se pueden conectar directamente. Los adaptadores pueden ser utilizados para interconectar dispositivos o cables de diferentes tipos. Por ejemplo, un adaptador puede ser utilizado para conectar un conector SMA a un BNC. También pueden servir para unir dos conectores del mismo tipo pero de género diferente. Figura

5.2.1.1. Los conectores de microondas son componentes de precisión y se pueden dañar fácilmente si se manipulan mal. Como regla general, debe rotar la manga exterior para apretar el conector, dejando el resto del conector (y el cable) estacionario. Si se tuercen otras partes del conector mientras estamos ajustándolo, o afojándolo, es muy posible que las mismas se rompan. Nunca pise, ni deje caer los conectores en el piso cuando desconecte los cables (esto sucede más a menudo de lo que usted se imagina, especialmente cuando trabajamos en un mástil sobre un techo).

5.2.1.1.1. Nunca utilice herramientas como las pinzas para apretar los conectores. Hágalo siempre con sus manos. Cuando trabaje en exteriores recuerde que los metales se expanden a altas temperaturas y reducen su tamaño a baja temperatura: un conector muy apretado puede dilatarse en el verano o quebrarse en el invierno.

6. TIPOS DE ANTENA

6.1. Frecuencia y tamaño

6.1.1. Las antenas utilizadas para HF son diferentes de las antenas utilizadas para VHF, las cuales son diferentes de las antenas para microondas. La longitud de onda es diferente a diferentes frecuencias, por lo tanto las antenas deben ser diferentes en tamaño para radiar señales a la correcta longitud de onda.

6.2. Directividad

6.2.1. Las antenas pueden ser omnidireccionales, sectoriales o directivas. Las antenas omnidireccionales irradian aproximadamente la misma seña alrededor de la antena en un patrón completo de 360.º Los tipos más populares de antenas omnidireccionales son las dipolos y las de plano de tierra. Las antenas sectoriales irradian principalmente en un área específca. El haz puede ser tan amplio como 180 grados, o tan angosto como 60 grados.

6.3. Construccion fisica

6.3.1. Las antenas pueden construirse de muchas formas diferentes, desde simples cables a platos parabólicos, o latas de café. Cuando consideramos antenas adecuadas para el uso en WLAN de 2.4 GHz se puede utilizar otra clasifcación:

6.3.2. Antena de 1/4 de longitud con plano de tierra

6.3.2.1. Antena de 1/4 de longitud con plano de tierra Esta antena es muy simple en su construcción y es útil para las comunicaciones cuando el tamaño, el costo y la facilidad de construcción son importantes. Esta antena se diseñó para transmitir una señal polarizada verticalmente. Consiste en un elemento de 1⁄4 de longitud onda como elemento activo y tres o cuatro elementos de 1⁄4 de longitud de onda inclinados de 30 a 45 grados hacia abajo. Este conjunto de elementos, denominados radiales, constituyen el plano de tierra. Figura ALT 11: Antena de un cuarto de longitud de onda con plano de tierra Esta es una antena simple y efectiva que puede captar una señal igualmente desde cualquier dirección. La ganancia de esta antena es del orden de los 24 dBi.

6.3.3. Antena Yagi-Uda

6.3.3.1. La antena Yagi, o más apropiadamente Yagi-Uda básica consiste en un cierto número de elementos rectos que miden, cada uno, aproximadamente la mitad de la longitud de onda. El elemento excitado o activo de una Yagi es el equivalente a una antena dipolo de media onda con alimentación central. En paralelo al elemento activo, y a una distancia que va de 0,2 a 0,5 longitud de onda en cada lado, hay varillas rectas o alambres llamados refectores y directores, o, simplemente, elementos pasivos.

6.3.3.2. Antena bocina

6.3.3.2.1. El nombre de la antena bocina deriva de su apariencia característica acampanada o de cuerno. La porción acampanada puede ser cuadrada, rectangular, cilíndrica o cónica. La dirección de máxima radiación se corresponde con el eje de la campana. Se puede alimentar sencillamente con una guía de onda, pero también puede hacerse con un cable coaxial y la transición apropiada. A pesar de que es engorroso fabricar esta antena en casa, una lata cilíndrica de dimensiones adecuadas tiene características semejantes Las antenas bocina se utilizan comúnmente como el elemento activo en una antena de plato. La bocina se coloca hacia el centro del plato refector.

6.3.4. Plato parabolico

6.3.4.1. Las antenas basadas en refectores parabólicos son el tipo más común de antenas directivas donde se requiere una gran ganancia. La ventaja principal es que pueden construirse para tener una ganancia y una directividad tan grande como sea necesario. La desventaja principal es que los platos grandes son difíciles de montar y podrían sufrir los efectos del viento. Los radomes (cobertura de material dielétrico para proteger la antena) pueden usarse para reducir los efectos del viento y para protección de la intemperie.

6.3.4.2. BiQuad

6.3.4.2.1. La antena BiQuad es fácil de armar y ofrece buena directividad y ganancia para las comunicaciones punto-a-punto. Consiste en dos cuadrados iguales de 1⁄4 de longitud de onda como elemento de radiación y de un plato metálico o malla como refector. Esta antena tiene un ancho del haz de aproximadamente 70 grados y una ganancia en el orden de 10-12 dBi. Puede ser utilizada como una antena única, o como un alimentador para un Plato Parabólico. Para encontrar la polarización: si observamos el frente de la antena, con los cuadrados colocados lado a lado, en esa posición la polarización es vertical.

6.3.4.3. Antenas Log Periodic

6.3.4.3.1. Estas antenas tienen una ganancia moderada en una banda de frecuencia amplia. Se usan a menudo en analizadores de espectro para hacer pruebas y también son populares como antenas receptoras de TV ya que cubren con efciencia desde el canal 2 hasta el 14. Estas antenas se usan en espacios blancos (white spaces) que necesitan la capacidad para trabajar en canales muy diferentes.

6.3.4.3.2. Otras Antenas