Comienza Ya. Es Gratis
ó regístrate con tu dirección de correo electrónico
NUMEROS REALES por Mind Map: NUMEROS REALES

1. SISTEMA DE CONJUNTO

1.1. A={ 1,3,5,7,9,11,13};B={x/x es un numero impar menor que ^5 }

2. NUMEROS NATURALES

2.1. N={1,2,3,4....+∞ }Es un sistema innumerable

2.1.1. para que sea un sistema debe ser obtener que : (N,+,:)

2.1.1.1. (adición y multiplicacion suma y el producto) (enteros positivos)

2.2. A+B ϵ N clausura

2.2.1. (a+b)+c=a+(b+c) asiociativa

2.2.2. a+b=b+a conmutativa

2.3. EJEMPLO

2.3.1. 7+4=3 4-7=-3

3. NUMERO ENTEROS MULTIPLICADO

3.1. A(BϵN) A*BϵN clausura

3.2. abϵN entonces a*b=ba conmutativa

3.3. A,B,C ϵN=(AB)C =A(BC) asiosiativa

3.4. A ϵN ,1ϵN,A*1=1A=A elemento neutro para la multiplicación

4. SISTEMA DE NUMEROS ENTEROS

4.1. N ⊂ Z

4.2. EJEMPLO 7 , -7

5. SISTEMA DE NUMEROS RACIONALES

5.1. Q = {a,b ϵ z / a/bϵQ, b≠0 }

5.2. INVERSO MULTIPLICATIVO =-0 5* 1/5=1

5.3. LA DENSIDAD conjuntos racionales , que entre dos N racionales existen infinitos de números

6. SISTEMA DE NUMERO IRRACIONALES

6.1. Sin embargo y a pesar de su extraño comportamiento tenemos dos afirmaciones que siempre son válidas: Si a es racional y b es irracional entonces la suma a + b siempre es irracional. Si a ≠ 0 es racional y b es irracional entonces el producto a · b siempre es irracional. En virtud de estas afirmaciones podemos decir que: 2 + √3 es irracional. 2 · √5 es irracional. El inverso aditivo de un número irracional, también lo es. El inverso multiplicativo de un irracional , también lo es.