LOS RAYOS X

Track and organize your meetings within your company

Comienza Ya. Es Gratis
ó regístrate con tu dirección de correo electrónico
LOS RAYOS X por Mind Map: LOS RAYOS X

1. EJEMPLOS

2. PERSONAJES

2.1. Históricamente hablando, pasaron muchos años desde el descubrimiento de los rayos X en 1895, hasta que el descubrimiento de esta radiación revolucionó los campos de la Física, la Química y la Biología. La potencialidad de su aplicación en estos campos vino indirectamente de la mano de Max von Laue (1879-1960), profesor sucesivamente en las Universidades Munich, Zurich, Frankfurt, Würzburg y Berlín, quien pretendiendo demostrar la naturaleza ondulatoria de esta nueva radiación usó un cristal de blenda frente a los rayos X, obteniendo la confirmación de su hipótesis y demostrando al mismo tiempo la naturaleza periódica de los cristales. Von Laue recibió por ello el Premio Nobel de Física de 1914. El experimento de Laue estuvo muy mediatizado por las ideas previas que le inculcó Paul Peter Ewald (1888-1985).Pero quienes realmente sacaron provecho del descubrimiento de los alemanes fueron los británicos Bragg (padre e hijo), William H. Bragg (1862-1942) y William L. Bragg (1890-1971), quienes en 1915 recibieron el Premio Nobel de Física al demostrar la utilidad del fenómeno que había descubierto von Laue para obtener la estructura interna de los cristales. Pero todo esto será objeto de apartados posteriores.

3. MAQUINAS

3.1. Existen varios sistemas de detección para rayos X. EL primer detector usado para este propósito fue la película fotográfica, preparadas con una emulsión apropiada para la longitud de onda de los rayos X. La sensibilidad de la película es determinada por el coeficiente de absorción másico y es restringida a un rango de líneas espectrales. La desventaja que presentan estas películas es un margen dinámico muy limitado y el largo tiempo y manipulaciones que se necesitan para revelarlas, por lo que han caído en desuso. En las últimas décadas del siglo XX se empezaron a desarrollar nuevos detectores bidimensionales capaces de generar directamente una imagen digitalizada. Entre estos se cuentan las «placas de imagen» (image plates), recubiertas de un material fosforescente, donde los electrones incrementan su energía al absorber los rayos X difractados y son atrapados en este nivel en centros de color. Los electrones liberan la energía al iluminarse la placa con luz láser, emitiendo luz con intensidad proporcional a la de los rayos X incidentes en la placa. Estos detectores son un orden de magnitud más sensibles que la película fotográfica y poseen un margen dinámico superior en varios órdenes de magnitud. Otro tipo de detector bidimensional digital muy utilizado consiste en una placa fosforescente acoplada a una cámara CCD.[3] En los años 2000 se empezaron a utilizar fotodiodos alineados formando una placa, denominados PAD

4. ESPECTRO ELECTROMAGNETICO

4.1. Position as market leader

4.2. Convert incoming traffic

4.3. Provide better client interaction

5. HISTORIA

5.1. Hace algo más de un siglo, en 1895, Wilhelm Conrad Röntgen (1845-1923), científico alemán de la Universidad de Würzburg, descubrió una radiación (entonces desconocida y de ahí su nombre de rayos X) que tenía la propiedad de penetrar los cuerpos opacos. Los rayos X son invisibles a nuestros ojos, pero producen imágenes visibles cuando usamos placas fotográficas o detectores especiales para ello

5.1.1. High Priority

5.1.2. Medium Priority

5.1.3. Low Priority

6. Los rayos X son radiaciones electromagnéticas, como lo es la luz visible, o las radiaciones ultravioleta e infrarroja, y lo único que los distingue de las demás radiaciones electromagnéticas es su llamada longitud de onda, que es del orden de 10-10 m (equivalente a la unidad de longitud que conocemos como Angstrom). Una excelente información divulgativa sobre el espectro electromagnético se puede encontrar en alguna de las páginas de la NASA, y en general sobre el uso médico de los rayos X en Medical Radiography, o en las páginas dedicadas a The X-Ray Century.