LOGARITMOS

Comienza Ya. Es Gratis
ó regístrate con tu dirección de correo electrónico
Rocket clouds
LOGARITMOS por Mind Map: LOGARITMOS

1. Los logaritmos fueron introducidos por John Napier a principios del siglo XVII como un medio de simplificación de los cálculos. Estos fueron prontamente adoptados por científicos, ingenieros, banqueros y otros para realizar operaciones fácil y rápidamente, usando reglas de cálculo y tablas de logaritmos. Estos dispositivos se basan en el hecho más importante — por derecho propio — que el logaritmo de un producto es la suma de los logaritmos

1.1. HISTORIA:

2. Logaritmo, en matemáticas, es el exponente o potencia a la que un número fijo, llamado base, se ha de elevar para dar un número dado. Por ejemplo, en la expresión 102 = 100, el logaritmo de 100 en base 10 es 2.

3. Elección y cambio de base Entre los logaritmos más utilizados se encuentra el logaritmo natural, cuya base es e, base 10 (logaritmo común), base 2 (logaritmo binario), o en base indefinida (logaritmo indefinido). La elección de un determinado número como base de los logaritmos no es crucial, ya que todos son proporcionales entre sí. Es útil la siguiente fórmula que define al logaritmo de x en base b (suponiendo que b, x, y k son números reales positivos y que tanto b como k son diferentes de 1):

4. El logaritmo natural de un número real positivo está bien definido y es un número real. Sin embargo, generalizar el logaritmo natural a números reales negativos sólo puede hacerse introduciendo números complejos. Sin embargo, al igual que sucede el logaritmo de números complejos la elección de logaritmo de un número negativo no es única, aunque la elección hecha es la más frecuentemente usada para extender el logaritmo a números reales negativos.

5. Los logaritmos discretos son los análogos en teoría de grupos de los logaritmos ordinarios. En particular, un logaritmo ordinario loga(b) es una solución de la ecuación ax = b sobre números reales o números complejos. De manera similar, si g y h son elementos de un grupo cíclico finito G, entonces una solución x de la ecuación gx = h es llamada logaritmo discreto en la base g de h en el grupo G.