Biomechanics

Comienza Ya. Es Gratis
ó regístrate con tu dirección de correo electrónico
Rocket clouds
Biomechanics por Mind Map: Biomechanics

1. Biomechanics is the study of the structure and function of biological systems such as humans, animals, plants, organs, and cells by means of the methods of mechanics

2. Subfields

3. The word "biomechanics" (1899) and the related "biomechanical" (1856) were coined by Nikolai Bernstein[citation needed] from the Ancient Greek βίος bios "life" and μηχανική, mēchanikē "mechanics", to refer to the study of the mechanical principles of living organisms, particularly their movement and structure

4. Method

5. Animal locomotion & Gait analysis

6. Musculoskeletal & orthopedic biomechanics

7. Ergonomy

8. Human factors engineering & occupational biomechanics

9. Implant (medicine), Orthotics & Prosthesis

10. Rehabilitation

11. Sports biomechanics

12. Allometry

13. Injury biomechanics

14. Sports biomechanics In sports biomechanics, the laws of mechanics are applied to human movement in order to gain a greater understanding of athletic performance and to reduce sport injuries as well. It focuses on the application of the scientific principles of mechanical physics to understand movements of action of human bodies and sports implements such as cricket bat, hockey stick and javelin etc. Elements of mechanical engineering (e.g., strain gauges), electrical engineering (e.g., digital filtering), computer science (e.g., numerical methods), gait analysis (e.g., force platforms), and clinical neurophysiology (e.g., surface EMG) are common methods used in sports biomechanics.

15. Comparative biomechanics Chinstrap penguin leaping over water Comparative biomechanics is the application of biomechanics to non-human organisms, whether used to gain greater insights into humans (as in physical anthropology) or into the functions, ecology and adaptations of the organisms themselves. Common areas of investigation are Animal locomotion and feeding, as these have strong connections to the organism's fitness and impose high mechanical demands. Animal locomotion, has many manifestations, including running, jumping and flying. Locomotion requires energy to overcome friction, drag, inertia, and gravity, though which factor predominates varies with environment. Comparative biomechanics overlaps strongly with many other fields, including ecology, neurobiology, developmental biology, ethology, and paleontology, to the extent of commonly publishing papers in the journals of these other fields. Comparative biomechanics is often applied in medicine (with regards to common model organisms such as mice and rats) as well as in biomimetics, which looks to nature for solutions to engineering problems

16. Plant biomechanics The application of biomechanical principles to plants and plant organs has developed into the subfield of plant biomechanics.

17. History Antiquity Aristotle wrote the first book on the motion of animals, De Motu Animalium, or On the Movement of Animals. He not only saw animals' bodies as mechanical systems, but pursued questions such as the physiological difference between imagining performing an action and actually doing it. In another work, On the Parts of Animals, he provided an accurate description of how the ureter uses peristalsis to carry blood from the kidneys to the bladder

18. Applications The study of biomechanics ranges from the inner workings of a cell to the movement and development of limbs, to the mechanical properties of soft tissue, and bones. Some simple examples of biomechanics research include the investigation of the forces that act on limbs, the aerodynamics of bird and insect flight, the hydrodynamics of swimming in fish, and locomotion in general across all forms of life, from individual cells to whole organisms. The biomechanics of human beings is a core part of kinesiology. As we develop a greater understanding of the physiological behavior of living tissues, researchers are able to advance the field of tissue engineering, as well as develop improved treatments for a wide array of pathologies. Biomechanics is also applied to studying human musculoskeletal systems. Such research utilizes force platforms to study human ground reaction forces and infrared videography to capture the trajectories of markers attached to the human body to study human 3D motion. Research also applies electromyography (EMG) system to study the muscle activation. By this, it is feasible to investigate the muscle responses to the external forces as well as perturbations. Biomechanics is widely used in orthopedic industry to design orthopedic implants for human joints, dental parts, external fixations and other medical purposes. Biotribology is a very important part of it. It is a study of the performance and function of biomaterials used for orthopedic implants. It plays a vital role to improve the design and produce successful biomaterials for medical and clinical purposes. One such example is in tissue engineered cartilage.