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1. Introduction

The term algebra (derived from the Arabic word al-jebr meaning
“reunion of broken parts") is used to describe a wide variety of math-
ematical techniques and disciplines. In its most elementary form,
algebra involves the manipulation of symbols. It is characterised by
the use of letters (such as x or y) to denote numbers whose value is
not yet known, or variables. However algebra is a far-reaching and
important current area of research in modern mathematics. In ab-
stract algebra, sets with additional structure (such as groups, rings
or fields) are studied and classified.

In this course we will focus on the parts of elementary algebra
which are useful in solving equations. These techniques are vital
for doing Mathematics and most branches of Science or Engineering.

E-mail address: mark.grant@abdn.ac.uk.
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We will be naturally led to consider complex numbers, matrices and
vectors, and their associated geometry.

1.1. What is a number? If you catch someone off guard with this
question, they might answer “something like 1, 2, 3, . . .". This is
a natural response, and indeed these positive whole numbers are
called natural numbers. However, you might respond, there are also
the negative whole numbers −1,−2,−3, . . . and 0. A whole number
(whether positive, negative or zero) is called an integer. There are
other numbers of course; we have fractions or rational numbers such
as 1

2
and −3

4
, and real numbers which can’t be expressed as frac-

tions, such as
√

2 and π. Mathematicians have developed special
notation for these different types of number. We use the symbols N,
Z, Q and R to denote the sets of natural numbers, integers, ratio-
nal and real numbers respectively. Note that there are containments
between these sets of numbers—every natural number is an integer,
every integer n is a rational n

1
, and so on. In symbols, we write

N ⊆ Z ⊆ Q ⊆ R.
A further piece of notation we will use is that for set membership.

The notation
x ∈ A

means that x is in the set A. So for example,
√

2 ∈ R but
√

2 /∈ Q
(the square root of two is in the real numbers but not in the rational
numbers).

Are there any other types of number? As we shall see, the answer
is an emphatic yes. The complex numbers form a number system
which contains the real numbers and is in many ways nicer for doing
algebra (and in particular for solving equations). Many other types
of generalized number exist (such as the quaternions and octonions)
but few of these share all the good properties of the complex numbers.

1.2. What is an equation? An equation is a mathematical formula
of the form A = B, asserting the equality of two mathematical ex-
pressions A and B. The expressions on the left and right hand side
of the equals sign may involve variables, in which case the equation
is neither true nor false. An equation can only be assigned a truth
value once all the variables have been assigned a value.

Example 1.3. The following are all equations:
(1) x2 + x = 2
(2) 22 + 2 = 2
(3) 12 + 1 = 2
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(4) y = mx+ c, where m and c are real numbers.
In (4) the letters m and c are constants (to be treated as fixed, unlike
variables). Note that while equation (3) is true and equation (2) is
false, equations (1) and (4) are neither true nor false.

The following are not equations:
(5) x2 + 3x
(6) 2x ≤ 6 (this is an example of an inequality).

♣

1.4. Solving equations. To solve an equation means to find all the
values of the variables for which the equation is true, these values
being called the solutions of the equation. This can often be achieved
by applying a sequence of operations to the equation. Each operation
(such as adding or subtracting a quantity, multiplying by a quantity,
or dividing by a nonzero quantity) must be applied to both sides of
the equation at the same time, so that equality is preserved. The goal
is to rearrange the equation to the point where one of the variables
appears on its own (with coefficient 1) on either the left- or right-hand
side.

Example 1.5. Solve 2x+ 4 = 0.
Subtracting 4 from both sides: 2x = −4

Dividing both sides by 2: x = −2

So the only solution is x = −2. ♣

Example 1.6. Solve x2 = x.
The temptation is to divide both sides by x, giving x = 1. However,

x is a variable, and in particular may be zero (and division by zero is
forbidden)! A better approach:

Subtract x from both sides: x2 − x = 0
Factorise the left-hand side: x(x− 1) = 0

Now we use the following fact: multiplying two nonzero numbers
gives a nonzero number. Put another way, if the product of two
number is zero, then one or the other (or both) of them must be zero.
It follows that x = 0 and x = 1 are the only solutions. ♣

Example 1.7. Solve x2 + 1 = 0.
This can be rearranged to give x2 = −1. We know that the square

of any real number is non-negative. Hence this equation has no real
solutions. However, in the next topic we will see that this equation
does have solutions in the complex numbers! We must specify what
kind of numbers we are prepared to accept as solutions. ♣
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Example 1.8. Find all solutions of x2 + y2 = 1 with x, y ∈ R.
Here there are two variables. We could rearrange to give y =
±
√
x2 − 1 or x = ±

√
y2 − 1. Here it is better to describe the solutions

geometrically. Thinking of x and y as coordinates in the plane, we
see (using Pythagoras’ Theorem) that the solutions are the points on
a circle of radius 1, centred at the origin (0, 0).

y

x

Thinking of variables as coordinates in this way can be very useful.
It sets up a correspondence between geometry and algebra, allowing
us to use geometric techniques to solve algebraic problems, and vice
versa. (The modern research field of algebraic geometry explores the
far-reaching consequences of this idea.) ♣

Suggestions for further reading:

• http://en.wikipedia.org/wiki/Algebra
• http://en.wikipedia.org/wiki/Number
• http://en.wikipedia.org/wiki/Equation_solving
• P. J. Cameron, Introduction to algebra, Chapter 1, pp.10–13.

http://en.wikipedia.org/wiki/Algebra
http://en.wikipedia.org/wiki/Number
http://en.wikipedia.org/wiki/Equation_solving
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2. Polynomial equations

A polynomial is a mathematical expression formed from a single
variable using only the operations of addition, exponentiation (taking
powers), and scalar multiplication (multiplication by a real number).
The degree of a polynomial is the largest power of the variable which
occurs with a nonzero coefficient.

Example 2.1. The following are polynomials:
(1) 2x+ 4
(2) 4x2 − 3x+ 1
(3) x7 + x6 + · · ·+ x2 + x+ 1

Their degrees are 1, 2 and 7 respectively.
The following are not polynomials:
(4) x cosx
(5)
√
x+ x

(6)
x2 + 1

x2 − 1
♣

Here is a formal definition.

Definition 2.2. Let n be a non-negative integer. A polynomial of
degree n is an expression of the form

P (x) := anx
n + an−1x

n−1 + an−2x
n−2 + · · ·+ a1x+ a0,

where a0, a1, . . . , an ∈ R and an 6= 0. Here x is a variable, and the
number ai is the coefficient of xi. The number an is the leading
coefficient and a0 (the coefficient of x0 = 1) is the constant coefficient.

A polynomial equation of degree n is an equation of the form

P (x) = 0

where P (x) is a polynomial of degree n. A solution of the polynomial
equation P (x) = 0 is also called a root of the polynomial P (x).

Remark 2.3. The above definition of polynomial can be generalised
in (at least) two ways:

(1) Here we are taking the coefficients ai to be real numbers.
We could also consider polynomials with coefficients in other
number systems (such as the complex numbers; see the next
section).

(2) We could also consider multi-variable polynomials, such as
P (x, y) := y3 − 3x2 + x.
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2.4. Quadratic equations. We’ll now work our way up through the
degrees. A degree zero polynomial is just a nonzero real number. A
degree one polynomial is called a linear polynomial. Linear polyno-
mial equations are easy to solve: the equation

a1x+ a0 = 0 where a1 6= 0

has the unique solution x = −a0
a1

.

The first interesting case is in degree 2, where we get quadratic
equations. Renaming the coefficients in a standard way, the general
quadratic equation is

ax2 + bx+ c = 0 where a 6= 0.

There are a couple of ways to solve quadratic equations. You could
either try and factorise the polynomial into two linear factors, or use
the standard formula

x =
−b±

√
b2 − 4ac

2a
.

The formula is derived by the method of completing the square. The
quantity ∆ = b2 − 4ac inside the square root is called the discrim-
inant of the polynomial. It determines the number of roots of the
polynomial:

• If ∆ > 0 there are two roots.
• If ∆ = 0 there is one repeated root.
• If ∆ < 0 there are no real roots (but there will be complex

roots; see next section).

Example 2.5. Check that you can solve the following quadratic equa-
tions:

(1) x2 − 2x− 3 = 0
(2) x2 + x− 1 = 0
(3) x2 + 14x+ 49 = 0
(4) x2 + 7 = 0.

♣

2.6. Cubic and higher degree polynomials. Polynomials of degree
3 are called cubic polynomials. The general cubic equation is of the
form

ax3 + bx2 + cx+ d = 0 where a 6= 0.

There is a general formula for the roots of a cubic polynomial (dis-
covered by Italian mathematicians in the 16th century). Although it
is messier to write down than the quadratic formula (and we shall
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not do so here), it is expressed in terms of the coefficients of the cu-
bic using only the basic operations of addition, subtraction, division,
multiplication and taking roots (operations such as √ or 3

√, other-
wise known as radicals). The general problem of solving an equation
in terms of its coefficients using only the above operations is called
solution in radicals.

The general quartic equation (polynomial equation of degree 4) has
a solution in radicals, but it is far too long and unwieldy to be use-
ful (see http://planetmath.org/quarticformula). A beauti-
ful and surprising theorem (which you can learn about in a Level 4
course Galois Theory) states that the general polynomial equation of
degree 5 or higher does not admit any solution in radicals.

2.7. Long division of polynomials. In the absence of a useable for-
mula for solving polynomial equations of higher degree, we usually
proceed as follows:

(1) Find a root c of P (x) by trial and error;
(2) Use long division to write P (x) = Q(x)(x − c), where Q(x) is

a polynomial of one degree lower than P (x);
(3) Repeat the above steps for Q(x).

In this section we will give details of each of these steps.
The long division algorithm can be also applied to polynomials. It

proves the following fact.

Proposition 2.8. Let P (x) and D(x) be polynomials with D(x) 6= 0.
Then there exist unique polynomials Q(x) and R(x) such that

P (x) = Q(x)D(x) +R(x),

and degR(x) < degD(x).

In the above expressionD(x) is called the divisor, Q(x) the quotient
and R(x) the remainder. We will adopt the convention that 0 is a
polynomial of negative degree, so that R(x) = 0 is allowed.

Long division of polynomials works in exactly the same way as long
division of numbers. It is easiest to see how using an example.

http://planetmath.org/quarticformula
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Example 2.9. We divide P (x) = x2 + x + 6 by D(x) = x − 2 using
long division:

x+ 3

x− 2
)

x2 + x+ 6
− x2 + 2x

3x+ 6
− 3x+ 6

12

In the picture above, the x+ 3 on the top line is the quotient and the
12 on the bottom line is the remainder. Notice that the remainder
is a polynomial of degree zero, strictly smaller than the degree of
D(x). They are computed as follows: we divide the x of D(x) into
the leading x2 of P (x) to obtain the x which is written on top of the
division brackets. Now multiply this x byD(x) to obtain x2−2x. This
is subtracted from the first two terms under the bracket to produce
the next line, 3x. Now "bring down" the 6 from the line above, to
produce 3x + 6 and repeat the process: first divide the x from D(x)
into the 3x giving the answer 3, which is added to the quotient. Now
multiply this 3 by D(x) to give 3x−6 and write the result underneath
(in the correct columns). Subtract this from the 3x + 6 on the line
above, to give the answer 12. Since this is a polynomial of degree
smaller than the degree of D, we stop here.

Our conclusion is that x2 + x+ 6 = (x− 2)(x+ 3) + 12. ♣

Definition 2.10. We say that a polynomialD(x) divides a polynomial
P (x) (or that P (x) is divisible by D(x)) if the remainder in the above
expression is equal to zero, R(x) = 0.

Example 2.11. The following calculation (using long division) shows
that x+ 4 divides x3 + 2x2 − 5x+ 12.

x2 − 2x + 3

x+ 4
)

x3 + 2x2 − 5x + 12
− x3 − 4x2

− 2x2 − 5x
2x2 + 8x

3x + 12
− 3x− 12

0

We can now solve the equation x3 + 2x2 − 5x + 12 = 0. The above
shows this is equivalent to (x+4)(x2−2x+3) = 0. Since the quadratic
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x2 − 2x + 3 has no real roots, we conclude that x = −4 is the only
real solution. ♣

The method used to solve the cubic equation above involves guess-
ing a linear polynomial dividing the given cubic. The next result
explains how to choose such a linear polynomial.

Theorem 2.12. A number s is a solution of a polynomial equation
P (x) = 0 if and only if the polynomial x−s divides the polynomialP (x).

Proof. If the polynomial x − s divides P (x) then there exists a poly-
nomial Q(x) such that

P (x) = (x− s)Q(x).

Thus we get that P (s) = (s− s)Q(s) = 0 ·Q(s) = 0, that is, s is a root
of P (x).

Conversely, suppose that s is a root of the polynomial P (x). Write

P (x) = Q(x)(x− s) +R(x),

where degR(x) < 1, that is, R(x) is a number. Since s is a root we
have

0 = P (s) = Q(s)(s− s) +R(s) = R(s).

Thus R(x) = 0 and hence x− s divides P (x). �

The above theorem tells us that if s1 is a root of a polynomial P (x)
then we can simplify it

P (x) = (x− s1)Q1(x),

where Q1(X) is a polynomial one degree lower that P (x). If s2 is a
root of Q1(x) (and hence also a root of P (x)) then we can simplify it
further

P (x) = (x− s1)(x− s2)Q2(x).

If we can continue this process then we end up in the simplest pos-
sible form

P (x) = (x− s1)(x− s2) . . . (x− sn).

This is however not always the case if we are dealing with real roots
only. It will turn out that such a factorisation is always possible over
the complex numbers (we will encounter them soon).

The following result is useful in finding roots by trial and error. To
state it we introduce some terminology. If a and b are integers, we
say that b divides a, and write b | a, if there exists some integer n
such that a = nb. The greatest common divisor of integers p and q,
denoted gcd(p, q), is the largest positive integer which divides both p
and q. For example, gcd(4, 6) = 2 and gcd(−1, 7) = 1.
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Theorem 2.13 (Rational root theorem). Let P (x) = anx
n+an−1x

n−1+
· · ·+ a1x+ a0 be a polynomial of degree n with integer coefficients, i.e.
ai ∈ Z. If the equation P (x) = 0 has a rational solution x = p

q
where

gcd(p, q) = 1, then p divides a0 and q divides an.

Proof. Since p
q

is a solution we have that

an
pn

qn
+ an−1

pn−1

qn−1
+ · · ·+ a1

p

q
+ a0 = 0.

Multiplying the equation by qn we obtain

anp
n + an−1p

n−1q + · · ·+ a1pq
n−1 + a0q

n = 0

p(anp
n−1 + an−1p

n−2q + · · ·+ a1q
n−1) = −a0qn

which means that p divides a0qn. Since the greatest common divisor
of p and q is one, this implies that p divides a0 as claimed.

Similarly we have that

anp
n + an−1p

n−1q + · · ·+ a1pq
n−1 + a0q

n = 0

q(an−1p
n−1 + · · ·+ a1pq

n−2 + a0q
n−1) = −anpn

which means that q divides anpn and hence q divides an as claimed.
�

Example 2.14. Solve the following equation

x3 − x2 + x− 1 = 0.

To do this without knowing a general formula we can apply the ratio-
nal root theorem 2.13. It tells us that if p

q
is a rational root in lowest

terms, then p | −1 and q | 1. Hence (since p and q are integers) we
have p = ±1 and q = ±1. The only possible rational roots are ±1.
We check that 1 is indeed a root and we divide the above polynomial
by x− 1 and obtain

x3 − x2 + x− 1 = (x− 1)(x2 + 1)

We can solve the remaining quadratic equation x2 + 1 = 0; it has no
real solutions. ♣

Example 2.15. Find all rational solutions of the equation

x4 + 3x3 + x2 + 2x− 2 = 0.

If p
q

is a rational root then p | −2 and q | 1, so the only possible
rational roots are ±1,±2. One checks easily that none of these are
roots. Hence this equation has no rational solutions.
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Example 2.16. Consider the equation

2x5 + 3x4 − 7x3 + x2 − 10x+ 6 = 0.

We know that there is no general solution for polynomial equations
of degree 5. However, the rational root theorem tells us that the only
possible rational solutions can be ±1,±1

2
,±2,±3,±3

2
,±6. We can

check by inspection that only 3
2

is a rational solution. Dividing the
above polynomial by x− 3

2
we obtain that

2x5 + 3x4 − 7x3 + x2 − 10x+ 6 = (2x− 3)(x4 + 3x3 + x2 + 2x− 2).

We know that the quotient x4 + 3x3 + x2 + 2x − 2 has no rational
roots. ♣

Example 2.17. Solve the equation

x5 − 2x4 − 3x3 + 6x2 + 2x− 4 = 0.

The rational root theorem says that ±1,±2,±4 are the only possible
rational roots. Indeed, we can check that ±1 and 2 are the actual
solutions. We do the long division and we obtain

x5 − 2x4 − 3x3 + 6x2 + 2x− 4 = (x− 1)(x+ 1)(x− 2)(x2 − 2).

We can now solve easily the equation x2 − 2 = 0 and we finally get
that

x5− 2x4− 3x3 + 6x2 + 2x− 4 = (x− 1)(x+ 1)(x− 2)(x−
√

2)(x+
√

2).

That is, the solutions of our equation are ±1, 2,±
√

2. ♣

Suggestions for further reading:

• http://en.wikipedia.org/wiki/Polynomial
• http://en.wikipedia.org/wiki/Rational_root_theorem
• http://en.wikipedia.org/wiki/Polynomial_long_
division
• http://www.purplemath.com/modules/polydiv2.htm
• Work through the interactive tutorials at http://www.zweigmedia.
com/RealWorld/tut_alg_review/framesA_5.html and
http://www.zweigmedia.com/RealWorld/tut_alg_review/
framesA_5B.html

http://en.wikipedia.org/wiki/Polynomial
http://en.wikipedia.org/wiki/Rational_root_theorem
http://en.wikipedia.org/wiki/Polynomial_long_division
http://en.wikipedia.org/wiki/Polynomial_long_division
http://www.purplemath.com/modules/polydiv2.htm
http://www.zweigmedia.com/RealWorld/tut_alg_review/framesA_5.html
http://www.zweigmedia.com/RealWorld/tut_alg_review/framesA_5.html
http://www.zweigmedia.com/RealWorld/tut_alg_review/framesA_5B.html
http://www.zweigmedia.com/RealWorld/tut_alg_review/framesA_5B.html
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3. Introduction to complex numbers

As we have seen in the last section, polynomial equations with
real coefficients do not always have real solutions. For example,
consider the equation x2 + 1 = 0. A solution for this equation would
be a “square root of −1”, and there are no real numbers with this
property. At the moment we just want to have a number which is
the square root of −1 so we artificially add it to our number system
and we would like to see what happens. We denote this new number
by
√
−1, or more commonly by i (the notation probably comes from

imaginary number, but this is unnecessarily whimsical). It has the
property that i2 = −1.

We want to multiply i by real numbers. So, if b is a real number
then what we get is bi and we observe that this has the property that
(bi)2 = b2i2 = b2(−1) = −b2 because we want the commutativity of
the multiplication to hold in our new setting. Observe that bi is not
a real number (unless b = 0) because its square is negative.

We also want to add together real numbers and these new ‘imagi-
nary’ numbers. This leads to the following definition.

Definition 3.1. A pair of real numbers (a, b) is called a complex num-
ber and it is denoted by z = a + bi. The set of complex numbers is
denoted by C. The real number a is called the real part of z, and is
denoted by Re(z). Similarly, the real number b is called the imaginary
part of z and is denoted by Im(z).

Example 3.2. (1) If z = 1, then Re(z) = 1 and Im(z) = 0.
(2) If z = 1+i, then Re(z) = 1 and Im(z) = 1. (Note that Im(z) = i

is incorrect: the imaginary part is always a real number!)
♣

How can we do this? Remember, this is Mathematics, not real life.
We can make any definition we wish (although admittedly some def-
initions are more useful than others).
Why do we do this? The simple answer is that even if we are only
interested in real solutions to equations, having complex numbers
around often simplifies things considerably. For instance, the for-
mula for the real roots of cubic equations involves complex numbers
(see http://en.wikipedia.org/wiki/Cubic_function). Re-
markably, complex numbers turn out to be hugely useful outside of
Mathematics, in fields such as Electrical Engineering and Quantum
Physics.

http://en.wikipedia.org/wiki/Cubic_function
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3.3. The arithmetic of complex numbers. To define addition, sub-
traction and multiplication on C, we just follow the ordinary rules of
arithmetic, treating i as a variable and replacing all instances of i2
with −1. To be explicit, let z = a + bi and w = c + di be complex
numbers. Then addition and subtraction are defined by

z + w = (a+ bi) + (c+ di) = (a+ c) + (b+ d)i,

z − w = (a+ bi)− (c+ di) = (a− c) + (b− d)i,

and multiplication is defined by

zw = (a+ bi)(c+ di)

= ac+ bic+ adi+ bidi

= ac+ bdi2 + (ad+ bc)i

= (ac− bd) + (ad+ bc)i.

Example 3.4. Let z = 3 + 2i and w = 1− 4i. Then:
(1) z + w = 4− 2i;
(2) z − w = 2 + 6i;
(3) zw = (3 + 8) + (−12 + 2)i = 11− 10i.

♣

In order to perform division of complex numbers, we will first in-
troduce the important notions of conjugation and modulus, and give
a few of their basic properties.

Definition 3.5. Let z = a+ bi ∈ C. The conjugate of z is

z̄ = a− bi.
The modulus of z is the non-negative real number

|z| =
√
a2 + b2.

Proposition 3.6. Let z = a+ bi be a complex number. Then

(1) zz̄ = |z|2,
(2) |z̄| = |z|,
(3) |z| = 0 if and only if z = 0.

Proof. Each of the properties follows from a simple computation.
(1) zz̄ = (a+ bi)(a− bi) = a2 + b2 = |z|2.
(2) Since z̄ = a− bi we have |z̄| =

√
a2 + (−b)2 =

√
a2 + b2 = |z|.

(3) The modulus equals zero if and only if a2 + b2 = 0. Since a2
and b2 are both non-negative, this is true if and only if both a
and b are zero, which means exactly that z = 0.

�
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Now let z = a+ bi and w = c+ di. We wish to write
z

w
=
a+ bi

c+ di

in the form x + yi, where x and y are real numbers. In order to
do this we apply a simple trick: we multiply top and bottom by w̄.
This of course doesn’t change the fraction, and we end up with a real
number on the bottom, since

z

w
=
z

w

w̄

w̄
=
zw̄

ww̄
=

zw̄

|w|2
.

Let’s see an example.

Example 3.7. Divide z = 3 + 4i by w = 2− i, expressing your answer
in the form a+ bi with a, b ∈ R.

3 + 4i

2− i
=

3 + 4i

2− i
· 2 + i

2 + i

=
2 + 11i

22 + 11

=
2

5
+

11

5
i.

♣

3.8. The complex numbers form a field. The complex number sys-
tem shares many good properties with the real or rational numbers.
We can formalise these properties as follows.

Proposition 3.9. The addition and multiplication on C satisfy the
following properties.

(1) The addition of complex numbers is commutative:

x+ y = y + x for all x, y ∈ C.

(2) The addition of complex numbers is associative:

x+ (y + z) = (x+ y) + z for all x, y, z ∈ C.

(3) 0 ∈ C is the identity for addition:

x+ 0 = x = 0 + x for all x ∈ C.

(4) Every complex number has an additive inverse:

For all x ∈ C, there exists −x ∈ C such that x+ (−x) = 0.

(5) The multiplication of complex numbers is commutative:

xy = yx for all x, y ∈ C.
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(6) The multiplication of complex numbers is associative:

x(yz) = (xy)z for all x, y, z ∈ C.

(7) 1 ∈ C is the identity for multiplication:

x1 = x = 1x for all x ∈ C.

(8) Every nonzero complex number has a multiplicative inverse:

For all x ∈ C such that x 6= 0, there exists x−1 ∈ C such that xx−1 = 1.

(9) The multiplication is distributive over the addition:

x(y + z) = xy + xz for all x, y, z ∈ C.

Proof. As an exercise, you can prove (1) - (7) and (9) using the corre-
sponding facts about real numbers (although you may well wonder
about how those facts you are using could be proved!). Here we will
only prove (8). So let x ∈ C, x 6= 0. By Proposition 3.6,

xx̄ = |x|2 6= 0

and we can define x−1 =
x̄

|x|2
. Then,

xx−1 = x
x̄

|x|2
=

xx̄

|x|2
= 1.

�

Remark 3.10. Let X be a set of numbers with addition and multipli-
cation. Depending on which of the properties from Proposition 3.9
are satisfied, the set X has different names. For instance, if X only
satisfies (1), (2) and (3) then it is called a monoid; if it also satisfies
(4), then it is called a group. If X satisfies all the properties except
(8), then X is a ring, and if it satisfies all of the properties (1)-(9) then
it is called a field.

Actually, you already know some examples of these notions. So far
we know the following sequence of inclusions

N ⊆ Z ⊆ Q ⊆ R ⊆ C.

The set of natural numbers N is a monoid, the set of integers Z is a
ring, and the sets of rational, real and complex numbers Q, R and C
are fields. Not all fields are like these three, some of them are finite.
The algebra of finite fields has powerful applications in cryptography.
All your electronic devices use this abstract algebra.
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3.11. Further properties of the modulus and conjugate.

Proposition 3.12. Let z and w be complex numbers. Then

(1) z + w = z̄ + w̄,
(2) zw = z̄w̄,

(3)
( z
w

)
=
z̄

w̄
when w 6= 0.

All of these statements are easy enough to check directly (just let
z = a+ bi and w = c+ di and evaluate both sides). They say that the
usual arithmetic operations of addition, multiplication and division
are preserved under conjugation.

Proposition 3.13. Let z and w be complex numbers. Then

(1) |zw| = |z||w|,

(2)
∣∣∣ z
w

∣∣∣ =
|z|
|w|

when w 6= 0.

The modulus preserves multiplication and division. Note, however,
that for addition the equality corresponding to Proposition 3.12(1) is
not true for the modulus; instead it must be replaced by an inequal-
ity.

Proposition 3.14 (The triangle inequality in C). Let z and w be com-
plex numbers. Then

|z + w| ≤ |z|+ |w|.

Proof. Let us first observe that for every complex number z = a + bi
we have:

• z + z̄ = a+ bi+ a− bi = 2a = 2 Re(z),
• Re(z) = a ≤ |a| =

√
a2 ≤

√
a2 + b2 = |z|.

These facts will be used in the following computation.

|z + w|2 = (z + w)(z + w)

= (z + w)(z̄ + w̄)

= zz̄ + ww̄ + wz̄ + zw̄

= |z|2 + |w|2 + (wz̄ + wz̄)

= |z|2 + |w|2 + 2 Re(wz̄)

≤ |z|2 + |w|2 + 2|wz̄|
= |z|2 + |w|2 + 2|w||z|
= (|z|+ |w|)2



MA1006 ALGEBRA 17

Since both |z+w| and |z|+ |w| are non-negative, taking square roots
preserves the inequality and gives the result. �

The statement of the triangle inequality (and the reason for it’s
name) will become intuitively obvious in the next section, once we
have interpreted complex numbers geometrically as points in the
plane.

3.15. Solving equations over C. In what follows we will discuss a
sequence of miraculous facts and properties about complex numbers.
Let’s start with an easy one.

Lemma 3.16. Every complex number has a square root.

Proof. Let a + bi ∈ C. We will assume b 6= 0 (otherwise we know the
roots are ±

√
a or ±i

√
−a). We want to find x + yi ∈ C such that

(x+ yi)2 = a+ bi. Note that

(x+ yi)2 = x2 + 2xyi+ (yi)2

= (x2 − y2) + 2xyi

and so we have to solve the system of equations{
x2 − y2 = a
2xy = b

Keep in mind that we want to find x and y real numbers satisfying
the above system!

Since b 6= 0 we have x, y 6= 0. Then, from the second equation we
obtain

y =
b

2x
.

We can substitute this in first equation:

x2 −
( b

2x

)2
= a.

Rearranging everything, we get a quartic equation

x4 − ax2 − b2

4
= 0.

Treating this as a quadratic equation in x2, we get

x2 =
a±
√
a2 + b2

2
.
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Since x has to be a real number, we get

x = ±
√
a+
√
a2 + b2√
2

.

Also, we deduce then that

y = ±
√√

a2 + b2 − a√
2

.

To finish the proof we have to say which combinations x+yi satisfy
(x + yi)2 = a + bi. The equation 2xy = b shows that x and y will be
of the same sign if b > 0 and of different signs when b < 0. Hence the
two roots are z and −z, where

z =

√
a+
√
a2 + b2√
2

+
|b|
b

(√√
a2 + b2 − a√

2

)
i.

�

The following (obvious) result shows that the complex numbers
simplify dealing with quadratic equations.

Theorem 3.17. Every quadratic equation

ax2 + bx+ c = 0

with complex coefficients has complex solutions given by the formula

x =
−b±

√
b2 − 4ac

2a
.

�

In fact, more is true. The following result is called The Fundamental
Theorem of Algebra.

Theorem 3.18. Every polynomial of positive degree with complex co-
efficients has at least one root in the field of complex numbers.

We will not give a proof here, but simply mention that there are
many beautiful proofs which use a variety of different branches of
Mathematics. Perhaps the most elementary proof can be found in
Chapter 19 of Proofs from the Book by Aigner and Ziegler. It uses
only very basic facts from calculus. Notice that the theorem does not
tell how to find a solution, it only proves that it exists.

By applying Theorem 2.12 we immediately obtain the following
result.



MA1006 ALGEBRA 19

Corollary 3.19. Every polynomial P (x) of degree n ≥ 1 with complex
coefficients is equal to a product of n polynomials of degree one

P (x) = an(x− c1)(x− c2) . . . (x− cn),

where an ∈ C is the leading coefficient and ci ∈ C are the roots of
P (x). �

Suggestions for further reading:

• http://en.wikipedia.org/wiki/Complex_number
• http://en.wikipedia.org/wiki/Fundamental_theorem_
of_algebra
• P. J. Cameron, Introduction to algebra, Chapter 1, pp.13–15.
• H. Anton, Elementary Linear Algebra (10th ed.), Appendix B.

http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra
http://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra
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4. The geometry of complex numbers

We defined complex numbers as ordered pairs (a, b) where a and
b are real numbers. We can then visualize the complex number
z = a + bi as the point in a plane with horizontal coordinate a and
vertical coordinate b. Such a pictorial representation of the complex
numbers is sometimes called an Argand diagram, sometimes just the
complex plane. The following figure shows an Argand diagram with a
few complex numbers plotted as black dots.

i

1

−2− i

a+ bi

a− bi

a

b

−b

Im(z)

Re(z)

If we imagine complex numbers this way, then (by Pythagoras’ The-
orem) the modulus of z is simply the distance of z to the point (0, 0),
and the conjugate z̄ is the point that we obtain when we reflect or
‘flip’ the plane along the horizontal axis.

Many other properties of the modulus and the conjugate have an
easy interpretation this way. For instance, given z, w ∈ C, we know
from Proposition 3.14 that

|z + w| ≤ |z|+ |w|.

The next figure shows how z+w has a simple geometric interpretation
as the diagonal of a parallelogram with sides z and w. This makes
the triangle inequality intuitively obvious.

w

z

z + w
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4.1. The argument of a complex number. Let z ∈ C with z 6= 0,
and let θ be the angle from the positive real axis to the interval joining
the origin with z, measured anti-clockwise in radians.

z

θ

The angle θ is called the argument of z, written arg(z). Note that
it is only defined when z is nonzero, and even then it is only defined
up to integer multiples of 2π (that is, any of the angles θ+ 2nπ where
n ∈ Z could equally well be called “the" argument). The unique
argument in the interval [0, 2π) (that is, with 0 ≤ θ < 2π) is called the
principal argument of z and it is denoted by Arg(z).

Remark 4.2. Some authors define the principal argument to be in the
interval (−π, π]. It is a matter of convention.

Computing the argument of the complex number z = a + bi re-
quires some care. Basic trigonometry tells us that tan θ = b/a. Cal-
culating the inverse tangent arctan(b/a) gives a value in the interval
(−π/2, π/2). The correct value for the argument will be one of

θ = arctan(b/a) or θ = arctan(b/a) + π.

Example 4.3. For each of the following complex numbers, calculate
its argument and principal argument:

(1) z = 1 + i.

Here tan θ = 1
1

= 1, so arg(z) = π/4 or
5π/4. A quick glance at the Argand diagram
tells us that arg(z) = π/4. Since this is
in the range [0, 2π), it is also the principal
argument.

(2) −1 + i.

Here tan θ = 1
−1 = −1, so arg(z) = −π/4

or 3π/4. From the diagram, arg(z) = 3π/4.
The principal argument is Arg(z) = 3π/4.
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(3)
√

3− i.
Here tan θ = −1√

3
, so arg(z) = −π/6 or 5π/6.

From the diagram, arg(z) = −π/6. Since
this is not in the range [0, 2π), we add 2π to
get the principal argument Arg(z) = 11π/6.

♣

4.4. The polar form of a complex number.

Lemma 4.5. For each z ∈ C, z 6= 0 there is an equality

z = |z|(cos θ + i sin θ)

where θ = arg(z).

The above expression of z is known as the polar form of z. To write
the complex number z = a + bi in polar form, we simply have to
compute its modulus and argument and plug them into the above
expression.

Example 4.6. (1) 1 + i =
√

2 (cos(π/4) + i sin(π/4))
(2) −1 + i =

√
2 (cos(3π/4) + i sin(3π/4))

(3)
√

3 + i = 2 (cos(π/6) + i sin(π/6))
(4) 1 + i

√
3 = 2 (cos(π/3) + i sin(π/3)) ♣

Converting a complex number given in polar form back to the form
z = a + bi (sometimes known as Cartesian form) is easy. We just
evaluate cos θ and sin θ and expand out the brackets.

4.7. Loci and regions in the complex plane. The interpretation
of complex numbers as points in the plane often allows us to give
succinct formulas for planar figures. For example, the equations

x2 + y2 = 1, x, y ∈ R and |z| = 1, z ∈ C

both describe a circle of unit radius centered at the origin. The set
of points satisfying a particular equation is sometimes called a locus
(the plural is loci). Equations relating the modulus and argument of
complex numbers define loci in the complex plane. By considering
inequalities instead of equations, we can also describe regions in the
complex plane. (Note however that there is no sensible interpretation
of z ≤ w for z, w ∈ C—the complex numbers are not ordered in the
same way that the reals are.)

Let’s look at some examples of loci first.
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Example 4.8. Sketch the solutions to the equation

|z − (1 + i)| = 2, z ∈ C.

We write z = a + bi and try to find an equation linking a and b. The
left-hand side is

|z − (i+ 1)| = |a+ bi− (1 + i)|
= |(a− 1) + (b− 1)i|
=

√
(a− 1)2 + (b− 1)2.

Both sides of the equation are non-negative, so we can square both
sides giving

(a− 1)2 + (b− 1)2 = 4,

which is the equation of a circle with centre (1, 1) and radius 2. Hence
the solutions form a circle in the complex plane centered at 1+ i with
radius 2.

1 + i

In fact, we can see this with less work. Given z, w ∈ C, the modulus
|z −w| is the distance between z and w in the complex plane. Hence
solutions to our equation are all complex numbers at distance 2 from
1 + i. ♣

Example 4.9. Now let’s try and sketch the locus

|z| = Re(z) + Im(z).

Again we write z = a + bi and try to get an equation linking a and b.
We get √

a2 + b2 = a+ b.

Since the left-hand side is non-negative, we get a+ b ≥ 0 and we can
square both sides to give

a2 + b2 = (a+ b)2 = a2 + 2ab+ b2.

Therefore 2ab = 0 which implies that a = 0 or b = 0 (or both). If a = 0
then a+ b ≥ 0 gives b ≥ 0. Similarly if b = 0 then a ≥ 0. We see that
the solution set is the union of the non-negative real and imaginary
axes.
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♣

Example 4.10. Sketch the solutions to |z| = Arg(z).
There is one solution for each value of θ = Arg(z) ∈ (0, 2π). The

origin z = 0 is not a solution because Arg(z) is not defined there.
Using the polar form, we have solutions

z = θ(cos θ + i sin θ), θ ∈ (0, 2π).

These form part of a spiral.

♣

Now let’s consider some regions.

Example 4.11. Sketch the regions of the complex plane given by the
inequalities

(1) |z − 2| ≤ 1
(2) 1 ≤ |z − i| ≤ 3

2

The first region is a disk of ra-
dius 1 centred at 2.
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i

The second region is an annulus.
It is the area enclosed between two
concentric circles centred at i, of
radii 1 and 3.

♣

Example 4.12. Sketch the region π ≤ Arg(z) ≤ 5π
4

.

This is the area enclosed between
two rays (infinite half-lines). It
does not include the origin, where
Arg(z) is undefined.

♣

Example 4.13. Sketch the region Re(z2) ≥ 1.

Writing z = a + bi, the following
inequalities are equivalent:

Re(z2) ≥ 1

Re(a2 − b2 + 2abi) ≥ 1

a2 − b2 ≥ 1.

The required region a2 − b2 ≥ 1 is
bounded by a hyperbola as shown.

♣

Suggestions for further reading:

• http://en.wikipedia.org/wiki/Complex_plane
• http://en.wikipedia.org/wiki/Argument_(complex_
analysis)
• H. Anton, Elementary Linear Algebra (10th ed.), Appendix B.
• T. Needham, Visual Complex Analysis, Chapter 1 (in particular

the Exercises at the end).

http://en.wikipedia.org/wiki/Complex_plane
http://en.wikipedia.org/wiki/Argument_(complex_analysis)
http://en.wikipedia.org/wiki/Argument_(complex_analysis)
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5. De Moivre’s Theorem

The next result, known as De Moivre’s theorem, provides an in-
tuition for the multiplication of complex numbers. It shows that
the polar form of complex numbers is far more convenient than the
Cartesian form for multiplication and taking powers.

Theorem 5.1 (De Moivre’s theorem). Let z = |z|(cosα + i sinα) and
w = |w|(cos β + i sin β). Then

zw = |z||w|(cos(α + β) + i sin(α + β)).

In other words, in order to multiply two complex numbers we multiply
their moduli and add their arguments.

Proof. We have

zw = |z||w|(cosα + i sinα)(cos β + i sin β)

= |z||w|(cosα cos β − sinα sin β + i(sinα cos β + cosα sin β))

= |z||w|(cos(α + β) + i sin(α + β))

as claimed, where at the last step we have used the standard sum
formulae for cos and sin. (In Section 9 below we will justify these
formulae using rotation matrices.) �

Corollary 5.2. If z = |z|(cos θ + i sin θ) then for every integer n ∈ Z
we have that

zn = |z|n(cos(nθ) + i sin(nθ)).

Proof. This follows from De Moivre’s theorem by the principle of math-
ematical induction, and the observation that if z 6= 0 then

z−1 =
z̄

|z|2
=
|z|
|z|2

(cos θ − i sin θ) = |z|−1(cos(−θ) + i sin(−θ)).

Here we have used the identities cos(−θ) = cos θ and sin(−θ) =
− sin θ. We omit the details. �

Example 5.3. Let z = 1 + i. Calculate z10 and z−8 using De Moivre,
giving your answers in Cartesian form.
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We first write z in polar form as z =
√

2(cos π
4

+ i sin π
4
). Then

z10 = (
√

2)10
(

cos
10π

4
+ i sin

10π

4

)
= 25

(
cos

π

2
+ i sin

π

2

)
= 32i.

z−8 = (
√

2)−8
(

cos
−8π

4
+ i sin

−8π

4

)
= 2−4(cos 0 + i sin 0)

=
1

16
.

♣

We might ask if De Moivre’s Theorem extends to non-integer pow-
ers. The answer is yes, almost. For example,

z1/2 = |z|1/2
(

cos(θ/2) + i sin(θ/2)
)

gives one value of the square root, but not the other. What about
complex exponents? In what sense is the equation

zw = |z|w
(

cos(wθ) + i sin(wθ)
)
, w ∈ C

true? We will try to make sense of this in subsequent sections.

5.4. Applications of De Moivre to root finding. In this section we
apply De Moivre’s theorem to find the degree n roots of a complex
number. In other words, we find all (complex) solutions of the equa-
tion

zn − c = 0,

where c ∈ C is a complex number. Notice that, if c = 0 then the only
solution is zero. The following result is an immediate consequence of
De Moivre’s theorem.

Corollary 5.5. Let n ∈ N be a natural number. Every nonzero complex
number c ∈ C has exactly n roots of degree n. Moreover, the roots
z1, z2, . . . , zn are given by

zk = n
√
|c|
(

cos

(
2π(k − 1) + θ

n

)
+ i sin

(
2π(k − 1) + θ

n

))
for k = 1, 2, . . . , n, where θ = Arg(c).

Proof. It is easy to check, by making a quick computation using De
Moivre’s theorem, that each of the above numbers is a degree n root
of c. On the other hand we know that the equation zn − c = 0 has at
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most n solutions. Hence the above numbers (which are all distinct)
are all of the degree n roots of c. �

On Figure 5.1 we show how to draw all degree n roots of a complex
number z = r(cos θ + i sin θ). We can quickly check that the number
z1 = n

√
r(cos(θ/n) + i sin(θ/n)) is a root of degree n of the number z.

All of the other roots are obtained from this one by a rotation through
2π/n radians. In order to draw all of them we proceed as follows (see
Figure 5.1).

(1) The number z is given and drawn on the plane;
(2) draw a ray from 0 to z;
(3) draw a circle of radius n

√
r centered at the origin;

(4) on the circle draw the number whose argument is θ/n; this
is z1;

(5) draw a regular n-gon with vertices on the circle and such that
z1 is a vertex.

1

Z

Z
1

Z

Z

Z

Z

2

3

4

5

Figure 5.1. Degree n roots of a complex number

One special case is particularly interesting, namely when c = 1.
We have the equation

zn − 1 = 0

and its solution is called a degree n root of unity.
These are the numbers ω, ω2, ω3, . . . , ωn = 1 where

ω = cos

(
2π

n

)
+ i sin

(
2π

n

)
.

Let us consider several cases for small values of n.
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(1) The only degree one root of unity is 1 itself.
(2) 1 and −1 are the square roots of unity.
(3) The numbers 1, −1

2
+i
√
3
2
, −1

2
−i
√
3
2

are the degree three roots
of unity.

(4) 1, i,−1 and −i are the degree four roots of unity.

1

Figure 5.2. Degree seven roots of unity

In general, observe that the degree n roots of unity are the vertices
of the regular n-gon inscribed in the unit circle so that 1 is a vertex
(see Figure 5.2).

Since we know that one itself is a root of unity of any degree we
can divide the polynomial zn − 1 by z − 1. The quotient is equal to

zn−1 + zn−2 + · · ·+ z2 + z + 1.

Thus the degree n roots of unity different from one are the solutions
of the equation

zn−1 + zn−2 + · · ·+ z2 + z + 1 = 0.

5.6. Applications of De Moivre to trigonometry. Although it is a
result about complex numbers, De Moivre’s Theorem can be used to
deduce trigonometric identities, in particular multiple-angle formu-
lae for sine and cosine. The general method is to take the identity

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ)

for some n ∈ N, expand out the left-hand side, then equate real and
imaginary parts.
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Example 5.7. Use De Moivre’s theorem to express cos(3θ) as a poly-
nomial in cos θ.

We have

(cos θ + i sin θ)3 = cos3 θ − 3 sin2 θ cos θ + i(3 sin θ cos2 θ − sin3 θ)

= cos(3θ) + i sin(3θ),

the last equality from De Moivre. Comparing real parts and using the
identity sin2 θ = 1− cos2 θ, we have

cos(3θ) = cos3 θ − 3 sin2 θ cos θ

= cos3 θ − 3(1− cos2 θ) cos θ

= 4 cos3 θ − 3 cos θ.

♣

Example 5.8. Express sin(4θ) as a polynomial in sin θ and cos θ.

(cos θ + i sin θ)4 = cos4 θ − 6 cos2 θ sin2 θ + sin4 θ

+i(4 cos3 θ sin θ − 4 cos θ sin3 θ)

= cos(4θ) + i sin(4θ).

Equating imaginary parts gives

sin(4θ) = 4 cos3 θ sin θ − 4 cos θ sin3 θ.

♣

5.9. The complex exponential. Suppose we wish to define the ex-
ponential ez of a complex number z = a+ bi, where e = 2.71828 . . . is
the base of the natural logarithm. The usual rules for exponentiation
tell us that

ea+bi = eaebi,

and since a is a real number ea is already defined (as a real number).
So we are left to define the exponential of purely imaginary numbers.
For this, recall that the exponential function and sine and cosine can
be defined by the following series:

ex = 1 + x+
x2

2
+
x3

3!
+
x4

4!
+ · · · =

∞∑
k=0

xk

k!
;

cos(x) = 1− x2

2
+
x4

4!
− x6

6!
+ · · · =

∞∑
k=0

(−1)k
x2k

(2k)!
;

sin(x) = x− x3

3!
+
x5

5!
− x7

7!
+ · · · =

∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
.
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If we evaluate the first formula on bi we get that

ebi = 1 + bi+
(bi)2

2
+

(bi)3

3!
+

(bi)4

4!
+

(bi)5

5!
+ · · ·

= 1 + bi− b2

2
− b3i

3!
+
b4

4!
+
b5i

5!
+ · · ·

=

(
1− b2

2
+
b4

4!
+ · · ·

)
+ i

(
b− b3

3!
+
b5

5!
+ · · ·

)
= cos b+ i sin b.

Finally we arrive at the definition of the complex exponential:

ez = ea+bi = ea(cos b+ i sin b).

Note that |ez| = eRe(z) and arg(ez) = Im(z).
In particular, for any real number θ we have eiθ = cos θ + i sin θ,

and so we can write a complex number in polar form as z = |z|eiθ
which simplifies the notation somewhat. De Moivre’s Theorem in this
form is equivalent to the identity

eiαeiβ = ei(α+β),

which is easier to remember as it is the usual rule for multiplying
powers.

Example 5.10. Letting z = iπ we have eiπ = cos π + i sin π = −1.
Written in the form

eiπ + 1 = 0

this is known as Euler’s identity, and is regarded by many as the
most beautiful equation in all of Mathematics. ♣

5.11. The complex logarithm, sine and cosine. Now that we have
defined exponentiation of complex numbers, we should be able to
define the inverse process of taking logarithms. Given a complex
number z, its logarithm log(z) should be a complex number w such
that ew = z. This means that |ew| = eRe(w) = |z| and arg(ew) =
Im(w) = arg(z). We are led to the following definition:

Definition 5.12. Given a nonzero complex number z ∈ C, its complex
logarithm is any number of the form

log(z) = ln |z|+ i arg(z),

where ln denotes the ordinary (real) natural logarithm.

Remark 5.13. Due to the fact that arg(z) is only defined up to integer
multiples of 2π, the complex logarithm is multi-valued, and so does
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not define a function in the usual sense. We could however choose
the unique value

Log(z) = ln |z|+ iArg(z)

and call this the principal logarithm. Note also that log(z) is defined
for all z 6= 0, unlike the real logarithm ln(x) which is undefined for
negative real numbers x.

You might wonder about extending other well-known functions to
the complex numbers. This can be done, for example we can define
complex cosine and complex sine using the complex exponential. First
note that for a real number θ we have

eiθ + e−iθ = 2 cos θ, eiθ − e−iθ = 2i sin θ.

Rearranging and replacing θ with an arbitrary complex number z, we
arrive at the following.

Definition 5.14. The complex cosine and complex sine of a complex
number z are given by

cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
.

Example 5.15. We can calculate cos i and sin(π − i) as follows:

cos i =
1

2

(
ei(i) + e−i(i)

)
=

1

2
(e−1 + e).

sin(π − i) =
1

2i

(
ei(π−i) − e−i(π−i)

)
=

1

2i

(
e1+πi − e−1−πi

)
=

1

2i
(e(cos π + i sin π)− e−1(cos(−π) + i sin(−π)))

= −i(e
−1 − e)

2
.

♣

We now return to the problem posed at the end of the last section,
asking whether De Moivre’s Theorem holds for complex powers. In
order to make sense of complex powers of complex numbers, we use
the exponential and logarithm functions. For z, w ∈ C, we define

zw = ew log z.
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Recall that the logarithm is multi-valued, so zw will be multi-valued
in general. With this definition, De Moivre’s formula

zw = |z|w
(

cos(wθ) + i sin(wθ)
)

can be interpreted as giving one of the values.

Suggestions for further reading:

• http://en.wikipedia.org/wiki/De_Moivre’s_formula
• http://en.wikipedia.org/wiki/Complex_logarithm
• R. A. Adams, Calculus – A Complete Course, Appendix 1.
• A. S. T. Lue, Basic Pure Mathematics II, Chapter 1.
• H. Anton, Elementary Linear Algebra (10th ed.), Appendix B.

http://en.wikipedia.org/wiki/De_Moivre's_formula
http://en.wikipedia.org/wiki/Complex_logarithm
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6. Systems of linear equations

In the previous sections we saw that polynomial equations with one
unknown can be difficult to solve in general. In this section we will
look at systems of equations with many unknowns but the equations
will be of a simpler form.

Example 6.1. Consider the following system of equations with two
unknowns x1 and x2. {

x1 − x2 = 1
2x1 + 3x2 = 3

To solve this system means to find all pairs (x1, x2) which solve both
equations simultaneously. We proceed as follows.

First, to eliminate x1 from the second equation, we multiply the
first equation by two: {

2x1 − 2x2 = 2

2x1 + 3x2 = 3

and then we subtract the first equation from the second:{
2x1 − 2x2 = 2

5x2 = 1

Dividing the second equation by five we have:{
2x1 − 2x2 = 2

x2 = 1/5

We have found that x2 = 1/5. Substituting this into the first equa-
tion, we get {

2x1 − 2/5 = 2

x2 = 1/5

which on rearranging gives {
x1 = 6/5

x2 = 1/5

This system has the unique solution (6/5, 1/5). ♣

Example 6.2. Consider the following system of 3 equations in 3 un-
knowns. 

x1 − x2 + x3 = −2

2x1 + 3x2 + x3 = 7

x1 − 2x2 − x3 = −2
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Subtract the first equation from the third:
x1 − x2 + x3 = −2

2x1 + 3x2 + x3 = 7

0 − x2 − 2x3 = 0

Now we multiply the first equation by two and subtract the result
from the second equation:

x1 − x2 + x3 = −2

0 + 5x2 − x3 = 11

0 − x2 − 2x3 = 0

Swap the second equation with the third:
x1 − x2 + x3 = −2

0 − x2 − 2x3 = 0

0 + 5x2 − x3 = 11

Multiply the second equation by five and add to the third:
x1 − x2 + x3 = −2

0 − x2 − 2x3 = 0

0 + 0 − 11x3 = 11

The last equation is now solved and we substitute the solution x3 =
−1 into the second and the first equation:

x1 − x2 − 1 = −2

0 − x2 + 2 = 0

x3 = −1

Now the second equation is solved and we substitute the solution
x2 = 2 to the first equation:

x1 − 2 − 1 = −2

x2 = 2

x3 = 1

Finally we get the full solution:
x1 = 1

x2 = 2

x3 = −1

♣
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In the above examples we manipulate with the system of equations
so that the manipulation does not change the solution and that we
get zeros in the bottom left corner of the system.

6.3. A complex example. The same procedure can be used to solve
systems of linear equations with complex coefficients. Consider the
system: 

ix1 − x2 + (1− i)x3 = i

2x1 + 3x2 + ix3 = 2

x1 − (2 + i)x2 − ix3 = 1

We play the same game as in the previous examples. To start we
multiply the first equation by i and add to the third equation:

ix1 − x2 + (1− i)x3 = i

2x1 + 3x2 + ix3 = 2

− (2 + 2i)x2 + x3 = 0

Next we multiply the first equation by 2/i = −2i and subtract from
the second equation:

ix1 − x2 + (1− i)x3 = i

+ (3− 2i)x2 + (2 + 3i)x3 = 0

+ (−2− 2i)x2 + x3 = 0

Multiply the second equation by (2 + 2i)/(3−2i) and add to the third
equation:

ix1 − x2 + (1− i)x3 = i

+ (3− 2i)x2 + (2 + 3i)x3 = 0

+
(2 + 2i)(2 + 3i) + (3− 2i)

3− 2i
x3 = 0

We obtain that x3 = 0 and substitute this to the second and the first
equation: 

ix1 − x2 = i

+ (3− 2i)x2 = 0

x3 = 0

We get that x2 = 0 and substitute it to the first equation and finally
get the full solution: 

x1 = 1

x2 = 0

x3 = 0
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Whether we are working over the real numbers or the complex num-
bers, the method is the same. In fact all we need to solve such a
system of equations is that we can add/subtract and multiply/divide
the coefficients. So this method works for linear systems with coeffi-
cients in any field.

6.4. Matrices. A matrix is a rectangular array of symbols. More
precisely, an (m× n)-matrix has the following form

a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . . ...
am1 am2 . . . amn


It has m rows and n columns. Each aij is called an entry or a coeffi-
cient of the matrix. For example,[

2 3 7
1 −1 2

]
is a (2× 3)-matrix with integer coefficients. And i 3

1 −1 + i
−2− 3i 1− i


is a (3× 2)-matrix with complex entries.

Matrices are useful in many situations. First, let us apply them to
solving linear systems of equations. Let us look again at the equation
from Example 6.2 

x1 − x2 + x3 = −2

2x1 + 3x2 + x3 = 7

x1 − 2x2 − x3 = −2

All the manipulations we did in order to solve the system were ap-
plied to the coefficients. The following (3 × 4)-matrix collects all the
coefficients of the system of equations.1 −1 1 −2

2 3 1 7
1 −2 −1 −2


This called the augmented matrix of the system (it is augmented by
the vertical line which separates the coefficients of the left-hand sides
from the right-hand sides).
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Our task is to obtain a matrix with zeros in the bottom left corner
and ones on the diagonal by applying the following operations which
don’t change the solutions of the system:

• swapping rows;
• multiplying a row by a number;
• adding one row to another.

In this concrete example we proceed as we did in Example 6.2, sys-
tematically reducing the entries of the matrix of coefficients until we
obtain an equivalent system which can be solved easily. The idea is
to obtain zeroes in all the positions under the diagonal of the matrix,
using only the three rules mentioned above. Let us first get a zero in
the position (2, 1) of the matrix. To do so, we subtract two times the
first row from the second. This operation is codified as r2 − 2r1:1 −1 1 −2

2 3 1 7
1 −2 −1 −2


r2−2r1

∼

1 −1 1 −2
0 5 −1 11
1 −2 −1 −2


Now we want to get a zero in the position (3, 1). To do so, we subtract
the first row from the third, which we abbreviate by r3 − r1:1 −1 1 −2

0 5 −1 11
1 −2 −1 −2


r3−r1

∼

1 −1 1 −2
0 5 −1 11
0 −1 −2 0


Next, we have to get a zero in the position (3, 2). To further simplify
calculations, before doing so we can swap the second and the third
rows, which we abbreviate by r2 ↔ r3:1 −1 1 −2

0 5 −1 11
0 −1 −2 0


r2↔r3

∼

1 −1 1 −2
0 −1 −2 0
0 5 −1 11


Now we can easily get a zero in the position (3, 2) by adding five times
the second row to the third (r3 + 5r2):1 −1 1 −2

0 −1 −2 0
0 5 −1 11


r3+5r2

∼

1 −1 1 −2
0 −1 −2 0
0 0 −11 11


Finally, we can multiply the third row by − 1

11
to get 1 on the left-hand

side. We denote this simply by − 1
11
r3:1 −1 1 −2

0 −1 −2 0
0 0 −11 11


− 1

11
r3

∼

1 −1 1 −2
0 −1 −2 0
0 0 1 −1
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The original system of equations is then equivalent to the system
x1 − x2 + x3 = −2

−x2 − 2x3 = 0

x3 = −1

meaning that both have the same solutions. But the system above
is very easy to solve: from the third equation we see that x3 = −1.
Substituting this in the second equation, we have x2 = 2, and then
substituting x2 = 2 and x3 = −1 in the first equation we deduce
x1 = 1.

It’s actually possible to simplify the system even more by using
further row operations: next, we use the third row to get a zero in
position (2,3):1 −1 1 −2

0 −1 −2 0
0 0 1 −1


r2+2r3

∼

1 −1 1 −2
0 −1 0 −2
0 0 1 −1


Now use row 3 to get a 0 in position (1,3):1 −1 1 −2

0 −1 0 −2
0 0 1 −1


r1−r3

∼

1 −1 0 −1
0 −1 0 −2
0 0 1 −1


Finally, use row 2 to get a zero in position (1,2),1 −1 0 −1

0 −1 0 −2
0 0 1 −1


r1−r2

∼

1 0 0 1
0 −1 0 −2
0 0 1 −1


and multiply row 2 by −1:1 0 0 1

0 −1 0 −2
0 0 1 −1


−r2

∼

1 0 0 1
0 1 0 2
0 0 1 −1

 .
We can now simply read the solution from the matrix.

Remark 6.5. The method of solving systems of linear equations pre-
sented in the above examples is called Gaussian elimination. It is very
efficient, and is the method used by computer algebra packages.

Example 6.6. Consider the following system where we have more
equations than unknowns.

x1 − x2 = −2

2x1 + 3x2 = 7

x1 − 2x2 = −2
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The matrix of coefficients is1 −1 −2
2 3 7
1 −2 −2


Let us apply the Gaussian elimination algorithm. The operation that
we do at each step is specified on the bottom right corner. For in-
stance, in the first step we subtract two times the first row from the
second, and this corresponds to r2 − 2r1:1 −1 −2

2 3 7
1 −2 −2


r2−2r1

∼

1 −1 −2
0 5 11
1 −2 −2


r3−r1

∼

1 −1 −2
0 5 11
0 −1 0


−r3

∼

1 −1 −2
0 5 11
0 1 0


r2↔r3

∼

1 −1 −2
0 1 0
0 5 11


r3−5r1

∼

1 −1 −2
0 1 0
0 0 11


The third row produces then the equation

0x1 + 0x2 = 11

which has no solutions. This means that the system has no solutions.
♣

Example 6.7. Now let us consider the system with two equations
and three unknowns and let’s find all real solutions.{

x1 + x2 − x3 = −2

2x1 + x2 + 3x3 = 7

The associated matrix of coefficients is[
1 1 −1 −2
2 1 3 7

]
Again, let us apply Gaussian elimination to solve the system.[

1 1 −1 −2
2 1 3 7

]
r2−2r1

∼
[
1 1 −1 −2
0 −1 5 11

]
r1+r2

∼
[
1 0 4 9
0 −1 5 11

]
−r2
∼

[
1 0 4 9
0 1 −5 −11

]
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In this case, we cannot reduce the coefficient matrix any more.
Notice that we have more variables than equations. We may then
consider x3 as a parameter, and we get then

x2 = 5x3 − 11 x1 = −4x3 + 9.

In other words, the solutions of the system form the (infinite) set

{(x1, x2, x3) ∈ R3 |x1 = −4t+ 9, x2 = 5t− 11, x3 = t for some t ∈ R}.
(Here we are using the standard notation R3 to denote the set of
triples of real numbers.)

We can also write the solutions of the system as the set

{(−4t+ 9, 5t− 11, t) ∈ R3 | t ∈ R}.
♣

Remark 6.8. In both the previous examples, we solved the system
by transforming the matrix into the simplest possible form. This is
called reduced row echelon form. The formal definition is below:

Definition 6.9. A matrix is said to be in row echelon form if:
(1) The first nonzero entry in each row is 1.
(2) In two consecutive nonzero rows, the leading 1 in the lower

row occurs farther to the right.
(3) Any rows consisting entirely of zeroes are grouped at the bot-

tom.
It is said to be in reduced row echelon form if in addition

(4) All the entries above each leading 1 are zero.
Any matrix can be put into (reduced) row echelon form using Gauss-
ian elimination.

Example 6.10. Let us see a longer example: consider the system

2x2 + x3 + x4 = 0

x1 + x3 + x5 = 6

x1 − x2 − x4 = 2

2x1 + x2 + 2x3 + x5 = 8

2x1 + x3 − x4 = 4

The matrix of coefficients is

A =


0 2 1 1 0 0
1 0 1 0 1 6
1 −1 0 −1 0 2
2 1 2 0 1 8
2 0 1 −1 0 4
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We can now start applying Gaussian elimination
0 2 1 1 0 0
1 0 1 0 1 6
1 −1 0 −1 0 2
2 1 2 0 1 8
2 0 1 −1 0 4


r1↔r3

∼


1 −1 0 −1 0 2
1 0 1 0 1 6
0 2 1 1 0 0
2 1 2 0 1 8
2 0 1 −1 0 4


r2−r1

1 −1 0 −1 0 2
0 1 1 1 1 4
0 2 1 1 0 0
2 1 2 0 1 8
2 0 1 −1 0 4


r4−2r1

∼


1 −1 0 −1 0 2
0 1 1 1 1 4
0 2 1 1 0 0
0 3 2 2 1 4
2 0 1 −1 0 4


r5−2r1

1 −1 0 −1 0 2
0 1 1 1 1 4
0 2 1 1 0 0
0 3 2 2 1 4
0 2 1 1 0 0


r3−2r1

∼


1 −1 0 −1 0 2
0 1 1 1 1 4
0 0 −1 −1 −2 −8
0 3 2 2 1 4
0 2 1 1 0 0


r4−3r2

1 −1 0 −1 0 2
0 1 1 1 1 4
0 0 −1 −1 −2 −8
0 0 −1 −1 −2 −8
0 2 1 1 0 0


r5−2r2

∼


1 −1 0 −1 0 2
0 1 1 1 1 4
0 0 −1 −1 −2 −8
0 0 −1 −1 −2 −8
0 0 −1 −1 −2 −8


r4−r3

1 −1 0 −1 0 2
0 1 1 1 1 4
0 0 −1 −1 −2 −8
0 0 0 0 0 0
0 0 −1 −1 −2 −8


r5−r3

∼


1 −1 0 −1 0 2
0 1 1 1 1 4
0 0 −1 −1 −2 −8
0 0 0 0 0 0
0 0 0 0 0 0


−r3

∼


1 −1 0 −1 0 2
0 1 1 1 1 4
0 0 1 1 2 8
0 0 0 0 0 0
0 0 0 0 0 0


This matrix is in row echelon form. We could solve the system now,

but it is easier and more instructive to continue until the matrix is
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in reduced row echelon form:
1 −1 0 −1 0 2
0 1 1 1 1 4
0 0 1 1 2 8
0 0 0 0 0 0
0 0 0 0 0 0


r2−r3

∼


1 −1 0 −1 0 2
0 1 0 0 −1 −4
0 0 1 1 2 8
0 0 0 0 0 0
0 0 0 0 0 0


r1+r2

∼


1 0 0 −1 −1 −2
0 1 0 0 −1 −4
0 0 1 1 2 8
0 0 0 0 0 0
0 0 0 0 0 0

 .
We can ignore the last two rows, since they do not give any informa-
tion about the system. Also, there is no row of the form[

0 0 0 0 0 ∗
]

and this means that the system has solutions.
However, once we discard the last two rows, the resulting system

has five variables and three equations. This means that the system
has infinitely many solutions, which depend on two parameters. In
other words, the solutions of the system form the set

{(z + t− 2, t− 4, 8− z − 2t, z, t) ∈ R5 | z, t ∈ R}.
♣

Suggestions for further reading:

• http://en.wikipedia.org/wiki/Gaussian_elimination
• Type Gaussian elimination into a search engine. One set of

online notes I like are at
http://www.it.uom.gr/teaching/linearalgebra/chapt6.
pdf/
• Almost any book with the words Linear Algebra in the title will

have a chapter on Gaussian elimination. One such is
H. Anton, Elementary Linear Algebra.

http://en.wikipedia.org/wiki/Gaussian_elimination
http://www.it.uom.gr/teaching/linearalgebra/chapt6.pdf
http://www.it.uom.gr/teaching/linearalgebra/chapt6.pdf
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7. Determinants

In this section we will see how to associate a number to any square
matrix (a square matrix is a matrix with the same number of rows as
columns). This number is called the determinant, because it deter-
mines the nature of the solutions of a linear system having the given
matrix as its coefficients.

To illustrate the idea, consider the general (2× 2) system{
ax1 + bx2 = y1
cx1 + dx2 = y2

where y1, y2 are constants.

If we try to eliminate x1 by subtracting c times the first equation from
a times the second, we arrive at the equation

(ad− bc)x2 = ay2 − cy1.
The nature of the solutions is then determined by the quantity ad−bc
associated to the matrix of coefficients.

• If ad− bc 6= 0, then the system has a unique solution.
• If ad−bc = 0, the system either has no solutions (if ay2−cy1 6=

0) or infinitely many solutions (if ay2 − cy1 = 0).
The quantity ad− bc is called the determinant of the (2× 2)-matrix

A =

[
a b
c d

]
, and denoted detA or |A|.

More generally, ifA is a square matrix we can associate to it a num-
ber, denoted det(A) or |A| and called its determinant. This number
determines the nature of the solutions of a linear system with coef-
ficient matrix A. In particular, the system has a unique solution if
and only if detA 6= 0.

7.1. Definition of the determinant. The formula for an (n× n) de-
terminant is recursive in nature. To give it, we first make the follow-
ing definition.

Definition 7.2. Let A be an (n× n)-matrix. The matrix Aij obtained
by deleting the i-th row and j-th column of A is called the (i, j)-th
minor of A.

Example 7.3. Let A =

1 2 3
4 5 6
7 8 9

. Then

A12 =

[
4 6
7 9

]
, A31 =

[
2 3
5 6

]
.

♣
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The formula for the determinant of an (n× n) matrix is as follows:
• If n = 1 then det[a] = a;

• If n = 2 then det

[
a b
c d

]
= ad− bc;

• If n ≥ 3 then

det


a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . . ...
an1 an2 . . . ann

 =
n∑
k=1

(−1)1+ka1k detA1k.

Remark 7.4. For (1× 1)-matrices there is a potential notational con-
flict with the modulus if we use vertical bars to denote determinants.
In particular we have |a| = a, which isn’t generally true for the mod-
ulus. We won’t worry too much about this, as we won’t have much
to do with (1× 1) determinants.

Example 7.5. Let’s compute the determinant of the (3× 3)-matrix

A =

1 2 3
4 5 6
7 8 9


from Example 7.3. The relevant minors are

A11 =

[
5 6
8 9

]
, A12 =

[
4 6
7 9

]
, A13 =

[
4 5
7 8

]
.

Let’s calculate their determinants:

detA11 = 5 · 9− 6 · 8
= −3,

detA12 = 4 · 9− 6 · 7
= −6,

detA13 = 4 · 8− 5 · 7
= −3.

Now expanding out the formula for the determinant given above, we
have

detA = a11 detA11 − a12 detA12 + a13 detA13

= 1 · (−3)− 2 · (−6) + 3 · (−3)

= 0.

♣
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The formula given above for an (n × n)-determinant is called the
Laplace formula or Laplace expansion. (There is another formula for
determinants know as the Leibniz formula which will not be discussed
here.) Notice that the first row of A played a special rôle in our
formula. Indeed, detA is obtained by multiplying each entry a1k of
the first row by the determinant of its corresponding minor A1k, and
then taking an alternating sum. In fact, the first row is not so special;
we could equally well expand around any other row or any column.

Theorem 7.6. Let A = [aij] be an (n × n)-matrix. Then for all 1 ≤
i, j,≤ n, we have

detA =
n∑
k=1

(−1)i+kaik detAik =
n∑
k=1

(−1)k+jakj detAkj.

Note the pattern of signs appearing in the Laplace expansion. Here
we represent the (n× n)-matrix [(−1)i+j] for some small values of n:

[
+ −
− +

]
,

+ − +
− + −
+ − +

 ,


+ − + −
− + − +
+ − + −
− + − +

 .
Example 7.7. Let’s go back to the matrix

A =

1 2 3
4 5 6
7 8 9


from Example 7.3 and calculate detA by expanding around the sec-
ond column instead. The relevant minors are

A12 =

[
4 6
7 9

]
, A22 =

[
1 3
7 9

]
, A32 =

[
1 3
4 6

]
,

and their determinants are

detA12 = −6, detA22 = −12 and detA32 = −6.

Applying the j = 2 case of the formula from Theorem 7.6, we find

detA = −a12 detA12 + a22 detA22 − a32 detA32

= −2 · (−6) + 5 · (−12)− 8 · (−6)

= 0,

which is the same answer as before. ♣

Example 7.8. We can use Theorem 7.6 to reduce the number of com-
putations needed to compute the determinant, by choosing to expand
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around rows or columns which are ‘sparse’, i.e. which contain lots
of zeroes. Take for instance the matrix

B =


1 4 7 −1
2 6 0 0
−1 3 0 2
4 1 0 0

 .
If we were to expand around the first row we’d have to calculate four
(3× 3) determinants. However, note that

detB = 7

∣∣∣∣∣∣
2 6 0
−1 3 2
4 1 0

∣∣∣∣∣∣ (expanding around 3rd column)

= 7(−2)

∣∣∣∣2 6
4 1

∣∣∣∣ (expanding around 3rd column)

= 7(−2)(−22) = 308.

♣

7.9. Properties of determinants. In this section we will give some
further useful properties of determinants, which will assist in their
calculation. We begin by identifying some special types of matrices
for which the determinant is particularly easy to compute.

Definition 7.10. A square matrix A = [aij] is called:
• diagonal if all entries off the main diagonal are zero, that is, if
aij = 0 for i 6= j;
• upper-triangular if all entries below the main diagonal are zero,

that is, if aij = 0 for i > j;
• lower-triangular if all entries above the main diagonal are zero,

that is, if aij = 0 for i < j.

Remark 7.11. Note that a matrix is diagonal if and only if it is both
upper- and lower-triangular.

Example 7.12. Let

A =

1 4 0
0 7 8
0 0 −1

 , B =

[
0 0
1 1

]
and C =

1 0 0
0 1 0
0 0 1

 .
The matrix A is upper-triangular. The matrix B is lower-triangular
(but not upper-triangular). The matrix C is diagonal. ♣

Proposition 7.13. The determinant of an upper-triangular or lower-
triangular matrix is the product of its diagonal entries.
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Proof. We will prove the result for upper-triangular matrices by in-
duction on the size of the matrix. The result is clearly true for
(1× 1)-matrices. Assume that the result holds for (n× n)-matrices,
and let A be a

(
(n + 1) × (n + 1)

)
-matrix with diagonal entries

a11, . . . , ann, a(n+1)(n+1). Expanding around the first column, we have

detA =
n+1∑
k=1

(−1)k+1ak1 detAk1.

Since A is upper triangular, ak1 = 0 for k > 1, and so the sum
reduces to

detA = a11 detA11.

Now, by our inductive hypothesis, since the minor A11 is (n × n)
upper-triangular, its determinant is the product of its diagonal en-
tries a22, . . . , a(n+1)(n+1). Therefore

detA = a11a22 · · · a(n+1)(n+1)

is the product of the diagonal entries of A. This completes the induc-
tion.

The proof for lower-triangular matrices is similar. �

Example 7.14.

det


2 6 0 8
0 −1 3 4
0 0 −4 10
0 0 0 3

 = 2× (−1)× (−4)× 3 = 24.

♣

The effect of the elementary row operations on the determinant is
described as follows.

Proposition 7.15. Let A be a square matrix.

(1) Multiplying one row of A by r ∈ R multiplies the determinant
by r.

(2) Adding a multiple of one row of A to another row leaves the
determinant unchanged.

(3) Swapping two rows of A multiplies the determinant by −1.

We will not prove these facts here, but note the following immediate
consequences.

Corollary 7.16. Let A be a square matrix.

(1) If any row of A consists entirely of zeroes, then detA = 0.
(2) If any row of A is a multiple of any other row, then detA = 0.
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All of this is suggestive that we might simplify the calculation of
the determinant of an arbitrary square matrix by first putting it in
to upper-triangular form using row operations. We must remember
that the determinant changes when we multiply a row by a number
or swap two rows!

Example 7.17. Calculate det

0 3 1
2 −4 6
5 2 −1

 using row operations.

∣∣∣∣∣∣
0 3 1
2 −4 6
5 2 −1

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
2 −4 6
0 3 1
5 2 −1

∣∣∣∣∣∣ (SwappingR1 andR2 intro-
duces a minus sign)

= −(2)

∣∣∣∣∣∣
1 −2 3
0 3 1
5 2 −1

∣∣∣∣∣∣ (a factor 2 from R1 comes
outside the det sign)

= −(2)

∣∣∣∣∣∣
1 −2 3
0 3 1
0 12 −16

∣∣∣∣∣∣ (R3 − 5R1 doesn’t change
the determinant)

= −(2)

∣∣∣∣∣∣
1 −2 3
0 3 1
0 0 −20

∣∣∣∣∣∣ (R3 − 4R2 doesn’t change
the determinant)

= −(2)(1)(3)(−20)

= 120.

♣

Definition 7.18. The transpose of a matrix A is the matrix AT whose
rows are the columns of A.

The transpose AT of an (m× n)-matrix A is therefore an (n×m)-
matrix, whose (i, j)-th entry is the (j, i)-th entry of A.

Example 7.19. The transpose of the matrix

A =

1 2 3
4 5 6
7 8 9

 is AT =

1 4 7
2 5 8
3 6 9

 .
The transpose of

x =

xy
z

 is xT =
[
x y z

]
.

♣
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Proposition 7.20. Let A be a square matrix. Then

det(AT ) = detA.

Corollary 7.21. The properties of determinants given in Proposition
7.15 and Corollary 7.16 remain true when the word ‘row’ is replaced
by the word ‘column’.

Example 7.22. Calculate detC where

C =


1 0 0 −3
−3 2 0 9
6 0 8 0
4 5 −1 −5

 .
We could expand around the first row, which would result in us

having to compute two 3 × 3 determinants. Better is to put C into
lower-triangular form by adding 3 times the first column to the last
column:∣∣∣∣∣∣∣∣

1 0 0 −3
−3 2 0 9
0 6 8 0
4 5 −1 −5

∣∣∣∣∣∣∣∣
C4+3C1

=

∣∣∣∣∣∣∣∣
1 0 0 0
−3 2 0 0
0 6 8 0
4 5 −1 7

∣∣∣∣∣∣∣∣ = 1× 2× 8× 7 = 112.

♣

Suggestions for further reading:

• http://en.wikipedia.org/wiki/Determinant
• Almost any book on Linear Algebra will have a chapter on

determinants. One such is H. Anton, Elementary Linear Alge-
bra.

http://en.wikipedia.org/wiki/Determinant
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8. Algebra of matrices

In this section we will define addition, subtraction, and multiplica-
tion of matrices. We can therefore do algebra with matrices, and can,
in a certain sense, think of matrices as generalized numbers. We will
work only with real matrices, but everything we say will be true for
complex matrices also.

8.1. Addition, scalar multiplication and subtraction of matrices.
We refer to an (m× n)-matrix as a matrix of size (m× n).

Definition 8.2 (Addition). If A and B are two matrices of the same
size, their sum A + B is the matrix obtained by adding the corre-
sponding entries of A and B. More formally, the sum of two (m×n)-
matrices A = [aij] and B = [bij] is the (m × n)-matrix defined by
A+B = [aij + bij].

Definition 8.3 (Scalar multiplication). If A is any matrix and r is any
number, the matrix rA is obtained from A by multiplying all entries
by r. If A = [aij] then rA = [raij].

Definition 8.4 (Subtraction). IfA andB are two matrices of the same
size, then A − B = A + (−1)B. Hence if A = [aij] and B = [bij] are
both (m× n)-matrices, then A−B = [aij − bij].
Remark 8.5. Note that in the above definitions of A + B and A− B,
we insisted that A and B be the same size. If A and B are matrices
of different sizes, then A+B and A−B are undefined.

Example 8.6. Consider the matrices

A =

[
2 4 3
0 1 6

]
, B =

[
−1 −2 0
3 −4 1

]
, C =

[
2 3
7 8

]
.

Then

A+B =

[
2 4 3
0 1 6

]
+

[
−1 −2 0
3 −4 1

]
=

[
2 + (−1) 4 + (−2) 3 + 0

0 + 3 1 + (−4) 6 + 1

]
=

[
1 2 3
3 −3 7

]
.

3A =

[
3× 2 3× 4 3× 3
3× 0 3× 1 3× 6

]
=

[
6 12 9
0 3 18

]
.
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B − 2A = B + (−2)A

=

[
−1 −2 0
3 −4 1

]
+

[
(−2)2 (−2)4 (−2)3
(−2)0 (−2)1 (−2)6

]
=

[
−1 −2 0
3 −4 1

]
+

[
−4 −8 −6
0 −2 −12

]
=

[
−5 −10 −6
3 −6 −11

]
The sum B+C is undefined, since B and C are of different sizes. ♣.

8.7. Multiplication of matrices. Multiplication of matrices is some-
what more complicated. The naive approach of just multiplying cor-
responding entries turns out to be not very useful, one reason being
that for the applications we have in mind we wish to multiply matri-
ces of different sizes. Here is the correct definition.

Definition 8.8. If A and B are matrices such that the number of
columns of A equals the number of rows of B, then the product AB
is defined. The (i, j)-th entry of AB is obtained by multiplying each
entry in the i-th row of A with the corresponding entry in the j-th
column of B, and then taking the sum. More formally, the product
of a (k ×m)-matrix A = [aij] and an (m × n)-matrix B = [bij] is the
(k × n)-matrix AB whose (i, j)-th entry is given by

ai1b1j + ai2b2j + · · ·+ aimbmj.

Remark 8.9. If the number of columns ofA does not equal the number
of rows ofB, then the productAB is undefined. Take note of the sizes
in the definition of the product:

(k ×��m)(��m× n) = (k × n).

All of this is best illustrated by example.

Example 8.10. Consider the (2 × 3)-matrix A and (3 × 2)-matrix B
given by

A =

[
1 2 3
2 3 4

]
and B =

1 2
2 3
2 2

 .
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Then we can form the products

AB =

[
1 2 3
2 3 4

]1 2
2 3
2 2


=

[
1× 1 + 2× 2 + 3× 2 1× 2 + 2× 3 + 3× 2
2× 1 + 3× 2 + 4× 2 2× 2 + 3× 3 + 4× 2

]
=

[
11 14
16 21

]
,

and BA =

1 2
2 3
2 2

[1 2 3
2 3 4

]

=

1× 1 + 2× 2 1× 2 + 2× 3 1× 3 + 2× 4
2× 1 + 3× 2 2× 2 + 3× 3 2× 3 + 3× 4
2× 1 + 2× 2 2× 2 + 2× 3 2× 3 + 2× 4


=

5 8 11
8 13 18
6 10 14

 .
♣

This example shows that with matrix multiplication, unlike with
ordinary multiplication of numbers, the order of multiplication mat-
ters. The products AB and BA are not equal (they are not even the
same size). This failure of commutativity can be even more dramatic,
as in the next example.

Example 8.11. Let A =

(
2 5
1 3

)
and let x =

[
x
y

]
. Then

Ax =

[
2 5
1 3

] [
x
y

]
=

[
2x+ 5y
x+ 3y

]
,

but xA is undefined. ♣

Proposition 8.12. Addition and multiplication of matrices satisfy the
following properties (compare Proposition 3.9):

(1) A+B = B + A whenever A and B are of the same size;
(2) A + (B + C) = (A + B) + C whenever A, B and C are of the

same size;
(3) A(BC) = (AB)C whenever the products are defined;
(4) A(B + C) = AB + AC whenever the products are defined;
(5) (A+B)C = AC +BC whenever the products are defined.
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Example 8.13. Let n ∈ N. We define Mn(R) to be the set of (n× n)-
matrices with entries from R, and Mn(C) to be the set of (n × n)-
matrices with entries from C. With the operations of matrix addition
and multiplication, both Mn(R) and Mn(C) are examples of non-
commutative rings.

8.14. Interpreting linear systems as matrix equations. In Exam-
ple 8.11, the (2 × 1)-matrix x could be viewed as having variable
entries. Using variable matrices in this way allows us to view any
system of linear equations as a single matrix equation. Take the
general system of m linear equations in n unknowns:

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2
... . . . ...

am1x1 + am2x2 + . . . + amnxn = bm

This is equivalent to single matrix equation Ax = b, where

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . . ...
am1 am2 . . . amn

 , x =


x1
x2
...
xn

 and b =


b1
b2
...
bm

 .
Remark 8.15. A matrix consisting of a single column may be referred
to as a vector (or column vector). Vectors are usually denoted by
boldface lower-case Roman letters, such as v. When hand-written,
they may be denoted using an underline v or an over-arrow ~v.

Example 8.16. The system of equations
x1 − x2 + x3 = −2

2x1 + 3x2 + x3 = 7

x1 − 2x2 − x3 = −2

can be written in matrix form as1 −1 1
2 3 1
1 −2 −1

x1x2
x3

 =

−2
7
−2

 .
♣

It is tempting to think that by writing a linear system in the form
Ax = b we have made it easier to solve. Can’t we just divide through
by the matrix A to give x = A−1b? There is a certain sense in which



MA1006 ALGEBRA 55

we can do this, for some matrices A. This will be made precise in
subsequent sections.

8.17. Identity matrices.

Definition 8.18. An identity matrix is a diagonal matrix, all of whose
diagonal entries are 1. For example,

I1 = [1] is the (1× 1) identity matrix,

I2 =

[
1 0
0 1

]
is the (2× 2) identity matrix,

I3 =

1 0 0
0 1 0
0 0 1

 is the (3× 3) identity matrix.

Proposition 8.19. Let In be the (n× n) identity matrix. Then

(1) det In = 1;
(2) If A is an (n× n)-matrix, then

InA = AIn = A.

(3) More generally, if B is an (n × `)-matrix and C an (m × n)-
matrix, then

InB = B and CIn = C.

The above properties indicate that identity matrices are to matrix
multiplication somewhat as the number 1 is to ordinary multiplica-
tion of numbers.

8.20. Inverse matrices.

Definition 8.21. Let A be an (n × n)-matrix. An inverse of A is an
(n× n)-matrix B such that

AB = BA = In.

Proposition 8.22. Any matrix A admits at most one inverse.

Proof. Suppose that B and C are both inverses of A. We have

AB = In (since B is an inverse of A)
=⇒ C(AB) = CIn (multiplying on the left by C)
=⇒ (CA)B = C (by 8.12(3) and 8.19(2))
=⇒ InB = C (since C is an inverse of A)
=⇒ B = C (by 8.19(2)).

Therefore B = C, which proves the claim of the Proposition. �
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Definition 8.23. If A admits an inverse we say that A is invertible,
and denote the inverse by A−1.

Not all matrices are invertible, as the following result shows.

Theorem 8.24. A square matrixA is invertible if and only if detA 6= 0.

We will not prove this result here, but give some indication of why
it is true.

In order to see that an invertible matrix has nonzero determinant,
we quote the following important property of determinants:

Proposition 8.25. If A and B are square matrices of the same size,
then

det(AB) = det(A) det(B).

Hence if A is invertible with inverse A−1, we have

1 = det In = det(AA−1) = det(A) det(A−1).

This shows that detA 6= 0. Note that it also shows that detA−1 =
(detA)−1.

In order to see that a matrix A with nonzero determinant is invert-
ible, we will give (in the next subsection) a formula for A−1 which is
valid whenever detA 6= 0.

8.26. Matrix Inversion. We will give two methods for finding the
inverse of a square matrix. The first method is sometimes called the
cofactor method. It is theoretically useful because it gives a closed
formula for the inverse of a matrix of any size. Due to the recursive
nature of this formula, however, it is inefficient for finding the inverse
of larger matrices. We begin by giving some definitions.

Let A be an (n× n)-matrix.

Definition 8.27. Let 1 ≤ i, j ≤ n. The (i, j)-th cofactor of A is

Cij = (−1)i+j detAij,

where Aij is the (i, j)-th minor of A (see Definition 7.2).

Remark 8.28. The cofactors appeared in the Laplace expansion for
the determinant of A (see Theorem 7.6). For any 1 ≤ i, j ≤ n we have

detA =
n∑
k=1

aikCik =
n∑
k=1

akjCkj.

Definition 8.29. Let C = [Cij] be the matrix of cofactors of A. The
adjugate matrix of A is the transpose of C:

adjA = CT = [Cji].



MA1006 ALGEBRA 57

Proposition 8.30. If A is invertible, then its inverse is given by

A−1 =
1

detA
adjA.

Example 8.31. Use the cofactor method to find the inverse of the
matrix

A =

 1 1 0
−1 0 1
3 2 1

 ,
if it exists.

We first of all check whether the inverse exists by computing the
determinant of A:

detA =

∣∣∣∣∣∣
1 1 0
−1 0 1
3 2 1

∣∣∣∣∣∣ =

∣∣∣∣0 1
2 1

∣∣∣∣− ∣∣∣∣−1 1
3 1

∣∣∣∣
= −2− (−4)

= 2.

Since the determinant is nonzero, we proceed to compute the cofac-
tors:

C11 = (−1)1+1

∣∣∣∣0 1
2 1

∣∣∣∣ C12 = (−1)1+2

∣∣∣∣−1 1
3 1

∣∣∣∣ C13 = (−1)1+3

∣∣∣∣−1 0
3 2

∣∣∣∣
= −2, = 4, = −2,

C21 = (−1)2+1

∣∣∣∣1 0
2 1

∣∣∣∣ C22 = (−1)2+2

∣∣∣∣1 0
3 1

∣∣∣∣ C23 = (−1)2+3

∣∣∣∣1 1
3 2

∣∣∣∣
= −1, = 1, = 1,

C31 = (−1)3+1

∣∣∣∣1 0
0 1

∣∣∣∣ C32 = (−1)3+2

∣∣∣∣ 1 0
−1 1

∣∣∣∣ C33 = (−1)3+3

∣∣∣∣ 1 1
−1 0

∣∣∣∣
= 1, = −1, = 1.

The matrix of cofactors is

C =

−2 4 −2
−1 1 1
1 −1 1

 ,
therefore the adjugate matrix is

adjA = CT =

−2 −1 1
4 1 −1
−2 1 1

 .



58 MARK GRANT

Finally, the inverse of A is

A−1 =
1

detA
adjA

=
1

2

−2 −1 1
4 1 −1
−2 1 1


=

−1 −1
2

1
2

2 1
2
−1

2
−1 1

2
1
2

 .
It’s always worth checking at this stage that we haven’t made some
arithmetical error, by multiplying A by our proposed A−1:

AA−1 =

 1 1 0
−1 0 1
3 2 1

−1 −1
2

1
2

2 1
2
−1

2
−1 1

2
1
2

 =

1 0 0
0 1 0
0 0 1

 ,
so we’re good. ♣

Example 8.32. Use Example 8.31 to solve the system x1 + x2 = 3
−x1 + x3 = 4
3x1 + 2x2 + x3 = −8

.

This system in matrix form is 1 1 0
−1 0 1
3 2 1

x1x2
x3

 =

 3
4
−8

 .
Multiplying this equation on the left by the A−1 found in Example
8.31, we get−1 −1

2
1
2

2 1
2
−1

2
−1 1

2
1
2

 1 1 0
−1 0 1
3 2 1

x1x2
x3

 =

−1 −1
2

1
2

2 1
2
−1

2
−1 1

2
1
2

 3
4
−8

 ,
which (since A−1A = I3) gives1 0 0

0 1 0
0 0 1

x1x2
x3

 =

x1x2
x3

 =

−9
12
−5

 .
Therefore the unique solution to the system is (x1, x2, x3) = (−9, 12,−5).
♣
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The second method for finding the inverse of A uses Gaussian
Elimination. It is more efficient for larger matrices, involving fewer
individual computations. This is the method of matrix inversion used
by computer algebra packages. These are the steps:

(1) Write down the augmented matrix [A | In], with A to the left
of the vertical line and the (n×n) identity matrix to the right.

(2) Perform elementary row operations to bring this matrix to re-
duced row echelon form.

(3) If the resulting matrix is in the form [In | B], then A−1 = B. If
the resulting matrix has a row which is zero to the left of the
line, then detA = 0 and A is not invertible.

Example 8.33. Find the inverse of the matrix A from Example 8.31
using Gaussian Elimination. 1 1 0 1 0 0

−1 0 1 0 1 0
3 2 1 0 0 1


r2+r1

r3−3r1

∼

1 1 0 1 0 0
0 1 1 1 1 0
0 −1 1 −3 0 1


r3+r2

∼

1 1 0 1 0 0
0 1 1 1 1 0
0 0 2 −2 1 1


1
2
r3

∼

1 1 0 1 0 0
0 1 1 1 1 0
0 0 1 −1 1

2
1
2


r2−r3

∼

1 1 0 1 0 0
0 1 0 2 1

2
−1

2
0 0 1 −1 1

2
1
2


r1−r2

∼

1 0 0 −1 −1
2

1
2

0 1 0 2 1
2
−1

2
0 0 1 −1 1

2
1
2

 .
This is in reduced row echelon form, and to the right of the vertical
line is the matrix A−1 found in Example 8.31. ♣

Example 8.34. Find the inverse of the matrix

B =


1 0 1 1
0 1 0 3
1 1 −1 0
−1 1 −1 2


if it exists.

Proceeding as before,
1 0 1 1 1 0 0 0
0 1 0 3 0 1 0 0
1 1 −1 0 0 0 1 0
−1 1 −1 2 0 0 0 1


r3−r1
r4+r1

∼


1 0 1 1 1 0 0 0
0 1 0 3 0 1 0 0
0 1 −2 −1 −1 0 1 0
0 1 0 3 1 0 0 1


r3−r2
r4−r2
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∼


1 0 1 1 1 0 0 0
0 1 0 3 0 1 0 0
0 0 −2 −4 −1 −1 1 0
0 0 0 0 1 −1 0 1

 .
The final row tells us that detB = 0 and so B has no inverse. ♣

Suggestions for further reading:

• http://en.wikipedia.org/wiki/Matrix_(mathematics)
• http://en.wikipedia.org/wiki/Invertible_matrix
• Any book on Linear Algebra, such as H. Anton, Elementary

Linear Algebra.

http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/Invertible_matrix
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9. Geometry of matrices

In this section we will explore the relationship between (m × n)-
matrices and linear transformations Rn → Rm. We will focus mainly
on the case of transformations R2 → R2, to aid visualization. We
shall see that the properties of matrices studied in previous sections
can be given concrete geometric meaning.

9.1. Linear transformations. Recall that, for n ∈ N,

Rn = {(x1, . . . , xn) | xi ∈ R for i = 1, . . . , n}

denotes the set of n-tuples of real numbers (ordered lists of n real
numbers). Given n,m ∈ N, a function f : Rn → Rm is a rule which
assigns to each element of the set Rn a unique element of the set Rm.

Example 9.2. The following are all functions:
(1) f : R2 → R(= R1) given by f(x1, x2) = x21 + x22;
(2) f : Rn → R given by f(x1, . . . , xn) = x21 + · · ·+ x2n;
(3) f : R→ R2 given by f(t) = (cos t, sin t);
(4) f : R2 → R3 given by f(x1, x2) = (x1 + x2, 2x1 − x2, 0).

♣

More generally, suppose we have m functions f1, . . . , fm : Rn → R.
Then we can assemble these into a function f : Rn → Rm given by

f(x1, . . . , xn) =
(
f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)

)
.

The functions f1, . . . , fm are called the coordinate functions of f .

Definition 9.3. A function f : Rn → Rm as above is called a linear
transformation if each of its coordinate functions f1, . . . , fm is a linear
polynomial in the variables x1, . . . , xn with zero constant term.

Example 9.4. The following functions are linear transformations:
(1) f : R3 → R2 given by f(x1, x2, x3) = (5x1 − 1

2
x2, x1 + x2 + x3);

(2) g : R4 → R1 given by f(x1, x2, x3, x4) = x1 + 2x2 + 3x3 + 4x4.
The following functions are not linear transformations:

(3) h : R3 → R3 given by

h(x1, x2, x3) = (x1x2x3, x1x2 + x2x3 + x3x1, x1 + x2 + x3);

(4) k : R2 → R3 given by k(x1, x2) = (sin(x1x2),
√
x21 + x22, x

2
1+x22);

(5) ` : R2 → R2 given by `(x1, x2) = (x1 + x2 + 3, x1 − x2 − 4).
♣



62 MARK GRANT

9.5. Matrices and linear transformations. There is a very tight re-
lationship between linear transformations f : Rn → Rm and (m×n)-
matrices. To understand it, we will start to view elements of Rn as
column vectors

x =


x1
x2
...
xn

 ∈ Rn.

Note that such a column vector x is nothing but an (n × 1)-matrix.
Given an (m×n)-matrix A, we can therefore multiply x on the left by
A to obtain an (m×1)-matrix Ax, which can be viewed as an element
of Rm. Therefore, left-multiplication by A defines a function

fA : Rn → Rm, fA(x) = Ax.

Proposition 9.6. The function fA associated to the matrix A in this
way is a linear transformation. Conversely, any linear transformation
f : Rn → Rm is given by left-multiplication by some (m× n)-matrix A.
We say that f is represented by the matrix A.

Proof. If A = [aij] is a general (m× n)-matrix, then

fA(x) =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . . ...
am1 am2 . . . amn



x1
x2
...
xn



=


a11x1 + a12x2 + . . .+ a1nxn
a21x1 + a22x2 + . . .+ a2nxn

...
am1x1 + am2x2 + . . .+ amnxn

 .
The coordinate functions of fA are clearly linear polynomials with
zero constant term, and so fA is a linear transformation.

Conversely, given a linear transformation f : Rn → Rm, extracting
the coefficients of x1, . . . , xn in the linear polynomials f1, . . . , fm gives
an (m × n)-matrix A. It is easily seen that left-multiplication by A
represents the function f . �

For any n ∈ N, the set Rn carries operations of addition and scalar
multiplication. For x,y ∈ Rn and r ∈ R we have

x + y =

x1...
xn

+

y1...
yn

 =

x1 + y1
...

xn + yn

 , rx = r

x1...
xn

 =

rx1...
rxn

 .
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Here we are viewing elements of Rn as (n×1)-matrices, and applying
the results of subsection 8.1. The following is often taken as the
definition of a linear transformation.

Proposition 9.7. A function f : Rn → Rm is a linear transformation if
and only if it satisfies the following properties:

• f(x + y) = f(x) + f(y) for all x,y ∈ Rn;
• f(rx) = rf(x) for all x ∈ Rn and r ∈ R.

That is, f is a linear transformation if and only if it takes the addition
and scalar multiplication in Rn to the addition and scalar multiplication
in Rm.

Proof. Let f : Rn → Rm be a linear transformation. Then f is rep-
resented by some matrix A, by Proposition 9.6. Therefore, for all
x,y ∈ Rn and r ∈ R, we have

f(x + y) = A(x + y)

= Ax + Ay (by property (4) of Proposition 8.12)
= f(x) + f(y),

f(rx) = A(rx)

= rAx

= rf(x),

and so f satisfies the properties in the Proposition.
Now suppose f : Rn → Rm satisfies the properties in the Proposi-

tion. We will find a matrix A representing f , hence showing f to be
a linear transformation by Proposition 9.6.

For this, we introduce the standard basis vectors

e1 =


1
0
0
...
0

 , e2 =


0
1
0
...
0

 , · · · , en =


0
0
0
...
1

 ,

where ei for i = 1, . . . , n has a 1 in the (i, 1)-th entry and zeroes
elsewhere. Note that any x ∈ Rn can be written as a sum of scalar
multiples of the standard basis vectors, thus:

x = x1e1 + x2e2 + · · ·+ xnen.
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It follows that our f is completely determined by where it sends the
standard basis vectors, since

f(x) = f(x1e1 + x2e2 + · · ·+ xnen)

= x1f(e1) + x2f(e2) + · · ·+ xnf(en).

Now we form the (m×n)-matrix A whose i-th column is the vector
f(ei) ∈ Rm:

A =
[
f(e1) f(e2) · · · f(en)

]
.

Then for all x ∈ Rn,

Ax =
[
f(e1) f(e2) · · · f(en)

] 
x1
x2
...
xn


= x1f(e1) + x2f(e2) + · · ·+ xnf(en)

= f(x),

and so A represents f as claimed. �

Note that in the course of the proof we have shown the following.

Corollary 9.8. Let f : Rn → Rm be a linear transformation. Then f is
represented by the (m× n)-matrix

A =
[
f(e1) f(e2) · · · f(en)

]
whose i-th column is f(ei). Here e1, e2, . . . , en are the standard basis
vectors of Rn.

9.9. Compositions and matrix multiplication. Suppose we’re given
functions f : Rn → Rm and g : Rm → R`. Then we can compose these
functions to get a new function

g ◦ f : Rn → R`, g ◦ f(x) = g
(
f(x)

)
.

The rule g ◦ f applied to a vector x ∈ Rn does the following: We first
apply f to x to get a vector f(x) ∈ Rm, then we apply g to this vector
to get a vector g(f(x)) in R`. Composition of linear transformations
corresponds to matrix multiplication:

Proposition 9.10. If f : Rn → Rm is represented by the (m × n)-
matrix A and g : Rm → R` is represented by the (` × m)-matrix B,
then g ◦ f : Rn → R` is represented by the (`× n)-matrix BA.
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Proof. We have

g ◦ f(x) = g
(
f(x)

)
= g(Ax)

= B(Ax)

= (BA)x (by property (3) of Proposition 8.12.)

�

The above Proposition, together with the observation made in sub-
section 8.7 that matrix multiplication is not commutative in general,
illustrates that in general the compositions g ◦ f and f ◦ g are not the
same function.

9.11. Transformations of the plane. In this section we will look at
some examples of linear transformations R2 → R2 and their matrices.

A column vector x =

[
x
y

]
∈ R2 can be viewed geometrically, either

as a point in the xy-plane, or as an arrow with tail at the origin and
head at the given point. Together with Corollary 9.8, this will aid us
in determining the matrices which represent several important types
of transformation, including rotations, scalings and reflections.

Rotation matrices. Consider the transformation of the plane

Rθ : R2 → R2

which rotates everything by θ radians anti-clockwise around the ori-
gin.

π/4

Pictured here is an object together
with its image under the transforma-
tion Rπ/4.

The transformation Rθ is linear, and as such is represented by a
(2 × 2)-matrix. To determine this matrix, we use Corollary 9.8. We
need to determine the imagesRθ(e1) andRθ(e2) of the standard basis



66 MARK GRANT

vectors

e1 =

[
1
0

]
and e2 =

[
0
1

]
,

as these will form the columns of our matrix.

e1

Rθ(e1)

1

θ

e2

Rθ(e2)

1
θ

As indicated by the above pictures, basic trigonometry tells us that

Rθ(e1) =

[
cos θ
sin θ

]
and Rθ(e2) =

[
− sin θ
cos θ

]
.

Hence by Corollary 9.8, rotation by θ is represented by the (2 × 2)-
matrix

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
.

Here we are abusing notation slightly and using the same name for
the matrix as the transformation it represents.

Example 9.12. Find the new coordinates of the point (2,−4) after a
rotation of the plane through an angle of π/6 radians clockwise.

Rotation by π/6 clockwise is rotation by −π/6 anti-clockwise. So
this transformation is represented by the rotation matrix

R−π/6 =

[
cos(−π/6) − sin(−π/6)
sin(−π/6) cos(−π/6)

]
=

[√
3/2 1/2

−1/2
√

3/2

]
.

The coordinates of the new point are therefore given by

R−π/6

[
2
−4

]
=

[√
3/2 1/2

−1/2
√

3/2

] [
2
−4

]
=

[ √
3− 2

−1− 2
√

3

]
≈
[
−0.268
−4.464

]
.

♣

Example 9.13. Let θ and φ be two angles. It is clear that a rotation
through θ followed by a rotation through φ has the same effect as
a single rotation through θ + φ. Thus the composition Rφ ◦ Rθ is
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represented by the same matrix as Rθ+φ. By Proposition 9.10, the
matrix representing the composition Rφ ◦Rθ is

RφRθ =

[
cosφ − sinφ
sinφ cosφ

] [
cos θ − sin θ
sin θ cos θ

]
=

[
cosφ cos θ − sinφ sin θ −(cosφ sin θ + sinφ cos θ)
sinφ cos θ + cosφ sin θ cosφ cos θ − sinφ sin θ

]
.

Comparing this with the matrix

Rθ+φ =

[
cos(θ + φ) − sin(θ + φ)
sin(θ + φ) cos(θ + φ)

]
allows us to derive the well-known angle sum formulae for cosine and
sine. ♣

Scaling matrices. Let a ∈ R, and consider the transformation

Sa : R2 → R2

which multiplies every vector in R2 by a. Such a transformation is
called a scaling of the plane, with scale factor a.

It is easy to see that

Sa(e1) =

[
a
0

]
and Sa(e2) =

[
0
a

]
.

Therefore a scaling with scale factor a is represented by the matrix

Sa =

[
a 0
0 a

]
.

Note that Sa is a times the (2× 2) identity matrix.

Pictured here is an object to-
gether with its image under the
transformation S2.
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Example 9.14. Let’s look at some special cases.

When a = 1, the transformation S1 is the
identity transformation which leaves every
vector where it is.

When a = −1, the transformation S−1
negates every vector. Since

S−1 =

[
−1 0
0 −1

]
=

[
cosπ − sin π
sin π cos π

]
= Rπ,

this is the same as rotation through an
angle of π radians.

♣

More generally, we can scale the plane by a different scale factor
in the direction of each coordinate axis. A scaling which scales by a
factor of a in the direction of the x-axis and by a factor of b in the
direction of the y-axis is represented by the diagonal matrix

Sa,b =

[
a 0
0 b

]
.

Example 9.15. Here are some examples:

The matrix S2,1 =

[
2 0
0 1

]
scales by a fac-

tor of 2 in the direction of the x-axis.

The matrix S−1,1 =

[
−1 0
0 1

]
scales by a

factor of −1 in the direction of the x-axis.
(Note that the orientation of the object
has changed under this transformation.)

♣
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Reflection matrices. We now consider transformations given by
reflection in a line through the origin in R2. Such a line is deter-
mined by the angle α it makes with the positive x-axis, measured
anti-clockwise in radians. Therefore we have a family of such trans-
formations

Tα : R2 → R2.

π/4

Pictured here is an object to-
gether with its image under the
reflection Tπ/4.

Example 9.16. The transformation T0 is reflection in the x-axis.

This has matrix T0 =

[
1 0
0 −1

]
. Note that

T0 = S1,−1.
♣

In order to determine the matrix representation of Tα for a general
α, we will use Example 9.16 together with Proposition 9.10 and our
knowledge of rotation matrices. The general reflection transformation
Tα can be viewed as the composition of three transformations:

• Firstly rotate the plane so that the line with angle α becomes
the x-axis;
• Next reflect in the x-axis;
• Finally rotate everything back again.

It follows that Tα is the composition Rα ◦ T0 ◦R−α. Note the order:
the first rotation is through −α. Now applying Proposition 9.10 (with
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three factors) the matrix representation of this reflection is

Tα = RαT0R−α

=

[
cosα − sinα
sinα cosα

] [
1 0
0 −1

] [
cos(−α) − sin(−α)
sin(−α) cos(−α)

]
=

[
cosα sinα
sinα − cosα

] [
cosα sinα
− sinα cosα

]
=

[
cos2 α− sin2 α 2 sinα cosα

2 sinα cosα sin2 α− cos2 α

]
=

[
cos(2α) sin(2α)
sin(2α) − cos(2α)

]
,

where at the last step we have used the double angle formulae for cos
and sin.

Example 9.17. Give the new coordinates of the point (−1, 8) after
reflection in the line through the origin at angle π/6.

The matrix representing this reflection is

Tπ/6 =

[
cos(π/3) sin(π/3)
sin(π/3) − cos(π/3)

]
=

[
1/2

√
3/2√

3/2 −1/2

]
.

Hence the coordinates of the new point are given by[
1/2

√
3/2√

3/2 −1/2

] [
−1
8

]
=

[
−1/2 + 4

√
3

−
√

3/2− 4

]
≈
[

6.428
−4.289

]
♣

9.18. Determinants as scale factors and inversion. The determi-
nant of a (2 × 2)-matrix A gives the scale factor by which areas of
finite regions in the plane are multiplied under the associated linear
transformation fA. More precisely, the absolute value of the deter-
minant gives the scale factor, and its sign determines whether the
orientation of the region gets reversed (the image of the region under
a transformation with negative determinant will appear ‘flipped’, as
if we were looking at it in a mirror). This general statement can be
made precise using the following result.

Proposition 9.19. Let fA : R2 → R2 be the linear transformation as-

sociated to the matrix A =

[
a b
c d

]
. The image under fA of the square
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with vertices at (0, 0), (1, 0), (0, 1) and (1, 1) is a parallelogram with
vertices at (0, 0), (a, c), (b, d) and (a+ b, c+ d).

(0, 0) (1, 0)

(1, 1)(0, 1)

(0, 0)

(a, c)

(a+ b, c+ d)

(b, d)
fA

The area of this parallelogram is

• detA = ad − bc if the vertices of the parallelogram are met in
the order (0, 0), (a, c), (a + b, c + d), (b, d) as we traverse its
perimeter in the anti-clockwise direction;
• − detA = bc − ad if the vertices of the parallelogram are met

in the order (0, 0), (b, d), (a + b, c + d), (a, c) as we traverse its
perimeter in the anti-clockwise direction.

Remark 9.20. There is a corresponding statement about volume and
(3 × 3)-determinants. More generally, mathematicians have a no-
tion of n-dimensional volume for every n ∈ N, and there is a corre-
sponding statement about this n-dimensional volume and (n × n)-
determinants.

Example 9.21. Let’s consider how the special matrices from the pre-
vious section affect areas.

θ

The rotation matrix

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
has determinant

detRθ = cos2 θ + sin2 θ = 1

for all θ. Hence rotations preserve area and
orientation.
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The scaling matrix

Sa,b =

[
a 0
0 b

]
has determinant

detSa,b = ab

and therefore scales areas by |ab|. If ab is
negative, the orientation is reversed. Pic-
tured here is the transformation S−2,1 with
determinant −2.

α

The reflection matrix

Tα =

[
cos(2α) sin(2α)
sin(2α) − cos(2α)

]
has determinant

detTα = − cos2(2α)− sin2(2α) = −1

for all α. Hence reflections preserve area and
reverse orientation.

♣
Suppose the matrix A has detA = ad − bc = 0. This happens

exactly when one column of A is a scalar multiple of the other, and
so the parallelogram in Proposition 9.19 is degenerate; its vertices all
lie on a straight line, and its area is 0. Thus the Proposition holds in
this case, too.

Definition 9.22. The linear transformation f : R2 → R2 is called
invertible if there exists a linear transformation f−1 : R2 → R2 such
that the compositions

f ◦ f−1 : R2 → R2 and f−1 ◦ f : R2 → R2

are both equal to the identity transformation (see Example 9.14). The
transformation f−1 is called the inverse of f .

Proposition 9.23. The linear transformation fA : R2 → R2 repre-
sented by the matrix A is invertible if and only if A is an invertible
matrix. In this case, the inverse of fA is fA−1.

Proof. First suppose that A is invertible with inverse A−1. Then the
compositions fA ◦ fA−1 and fA−1 ◦ fA are represented by the matrices
AA−1 = I2 and A−1A = I2, and hence are both the identity transfor-
mation. This shows that fA is invertible with inverse fA−1.

Conversely, if fA is invertible with inverse f−1A , then f−1A is rep-
resented by some matrix B. Since the compositions fA ◦ f−1A and
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f−1A ◦ fA are both the identity, it follows from Proposition 9.10 that
the matrix products AB and BA both equal I2. Hence B = A−1, and
A is invertible. �

It stands to reason that a transformation with determinant zero will
not be invertible, since it sends regions of positive area to regions of
zero area, losing information in the process. What is really happening
is that such a transformation lowers dimension. We will come back
to this later.

Suggestions for further reading:

• http://mathinsight.org/matrices_linear_transformations
• http://mathinsight.org/determinant_linear_transformation
• http://en.wikipedia.org/wiki/Linear_map
• Any book on Linear Algebra, such as H. Anton, Elementary

Linear Algebra.

http://mathinsight.org/matrices_linear_transformations
http://mathinsight.org/determinant_linear_transformation
http://en.wikipedia.org/wiki/Linear_map
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10. Eigenvalues and eigenvectors

In the last section we saw that the transformation of the plane
associated to the diagonal matrix

Sa,b =

[
a 0
0 b

]
produced a scaling by a factor of a in the direction of the x-axis and a
scaling by a factor of b in the direction of the y-axis. More generally,
given a square matrix A one can often identify certain directions in
which the associated linear transformation fA produces a scaling.
A vector which points in such a direction is called an eigenvector
of A, and the associated scale factor is an eigenvalue. Eigenvalues
and eigenvectors are important quantities attached to a matrix (the
prefix eigen- comes from the German for own-) with many and varied
applications.

Definition 10.1. Let A be an (n×n)-matrix. A nonzero vector x ∈ Rn

is called an eigenvector of A if there exists a number λ ∈ R such that

Ax = λx.

Such a λ is called the eigenvalue of A associated with the eigenvector
x.

Remarks 10.2. (1) The zero vector 0 ∈ Rn (all of whose entries
are zero) satisfies the defining equation A0 = λ0 for all λ ∈ R,
however it is not considered an eigenvector of A (as it’s too
boring).

(2) We define the eigenvalues and eigenvectors of the linear map
fA : Rn → Rn similarly, as solutions of the equation

fA(x) = λx.

(3) One can also define eigenvalues and eigenvectors of (n × n)
complex matrices, in which case an eigenvector is an element
of Cn and an eigenvalue is a complex number.

Observe that if x is an eigenvector of A with the eigenvalue λ then
any nonzero multiple rx, where 0 6= r ∈ R is also an eigenvector with
the same eigenvalue. Indeed,

A(rx) = rAx = rλx = λ(rx).

Hence each eigenvalue is associated to infinitely many eigenvectors.
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Example 10.3. Consider the scaling matrix S3,2.

S3,2e1e1

S3,2e2

e2

We have

S3,2e1 =

[
3 0
0 2

] [
1
0

]
=

[
3
0

]
= 3e1,

which shows that e1 is an eigenvector of
S3,2 with associated eigenvalue 3. Any
nonzero multiple re1, 0 6= r ∈ R is also
an eigenvector with eigenvalue 3.

Similarly,

S3,2e2 =

[
3 0
0 2

] [
0
1

]
=

[
0
2

]
= 2e2,

so e2 is an eigenvector with associated eigenvalue 2. So is se2 for any
0 6= s ∈ R.

♣

Example 10.4. Consider the reflection matrix Tπ/4.

Tπ/4x1 = x1

x2

Tπ/4x2 = −x2

This leaves fixed all vectors on the line x = y, so every vector of the
form

x1 =

[
r
r

]
, 0 6= r ∈ R

is an eigenvector with associated eigenvalue 1.
Any vector perpendicular to the line x = y gets sent to its negative,

and hence every vector of the form

x2 =

[
s
−s

]
, 0 6= s ∈ R

is an eigenvector with associated eigenvalue −1. ♣

Example 10.5. The rotation matrix Rθ has no eigenvectors what-
soever, unless θ = 0, in which case every nonzero x ∈ R2 is an
eigenvector with eigenvalue 1, or θ = π, in which case every nonzero
x ∈ R2 is an eigenvector with eigenvalue −1. ♣
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10.6. How to find the eigenvalues. We now describe a procedure
for finding the eigenvalues and eigenvectors of an (n × n)-matrix A.
The first step is to find the eigenvalues. Note that we can rewrite
the defining equation (by subtracting λx = λInx from both sides) as
follows:

Ax = λx
⇐⇒ Ax− λInx = 0
⇐⇒ (A− λIn)x = 0.

This final matrix equation can be viewed as a linear system. Since the
right-hand sides are all zero, we will always have x = 0 as a solution.
We want to know for which values of λ the system has nonzero solu-
tions x 6= 0, since such solutions will be eigenvectors with associated
eigenvalue λ. The answer depends on the determinant det(A− λIn),
which is a polynomial in λ.

Definition 10.7. The polynomial

pA(λ) = det(A− λIn)

is called the characteristic polynomial of A, and the resulting polyno-
mial equation

det(A− λIn) = 0

is called the characteristic equation of A.

Proposition 10.8. The eigenvalues of A are the roots of pA(λ). �

Example 10.9. Find the eigenvalues of the matrix A =

[
3 −1
2 0

]
.

The eigenvalues are the roots of the characteristic polynomial

pA(λ) = det(A− λI2)

=

∣∣∣∣3− λ −1
2 −λ

∣∣∣∣
= (3− λ)(−λ) + 2

= λ2 − 3λ+ 2

= (λ− 1)(λ− 2).

Hence the eigenvalues are λ = 1 and λ = 2. ♣

Example 10.10. Find the eigenvalues of the matrixB =

 4 0 1
−2 1 0
−2 0 1

.
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The characteristic polynomial is

pB(λ) = det(B − λI3)

=

∣∣∣∣∣∣
4− λ 0 1
−2 1− λ 0
−2 0 1− λ

∣∣∣∣∣∣
= (1− λ)

[
(4− λ)(1− λ) + 2

]
(expanding around the 2nd column)

= (1− λ)(λ2 − 5λ+ 6)

= (1− λ)(λ− 2)(λ− 3).

Hence the eigenvalues are λ = 1, λ = 2 and λ = 3. ♣

The eigenvalues of a real (n × n)-matrix are the real roots of its
characteristic polynomial, a real polynomial of degree n. Hence there
are at most n eigenvalues. It may happen that the characteristic
polynomial has complex roots — we will not consider these as eigen-
values (although in the analogous theory of complex matrices and
linear maps f : Cn → Cn, they would be considered as such).

Example 10.11. Returning to the rotation matrix Rθ, its character-
istic polynomial is∣∣∣∣cos θ − λ − sin θ

sin θ cos θ − λ

∣∣∣∣ = (cos θ − λ)2 + sin2 θ

= λ2 − 2λ cos θ + cos2 θ + sin2 θ

= λ2 − 2λ cos θ + 1,

the roots of which are found by the quadratic formula to be

λ =
2 cos θ ±

√
4(cos2 θ − 1)

2
=

2 cos θ ±
√
−4 sin2 θ

2
= cos θ ± i sin θ.

Hence the eigenvalues are real precisely when sin θ = 0, so when θ is
an integer multiple of π (compare Example 10.5 above). ♣

10.12. Finding the eigenvectors associated to an eigenvalue. Sup-
pose we have found λ to be an eigenvalue of the (n × n)-matrix A.
An eigenvector associated to λ is then a nonzero solution x to the
equation

(A− λIn)x = 0.

The fact that λ is an eigenvalue means precisely that such solutions
exist. So finding the eigenvectors boils down to solving a linear sys-
tem.
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Example 10.13. Find the eigenvectors of the matrix A =

[
3 −1
2 0

]
corresponding to the eigenvalues λ = 1 and λ = 2 found in Example
10.9.

When λ = 1 we have

A− λI2 = A− I2 =

[
2 −1
2 −1

]
,

so the eigenvectors are nonzero solutions of the system{
2x1 − x2 = 0
2x1 − x2 = 0

.

By inspection, this is equivalent to x2 = 2x1. We may then consider
x1 = s as a free parameter, and the eigenvectors associated to λ = 1
are all vectors of the form[

s
2s

]
= s

[
1
2

]
, 0 6= s ∈ R.

When λ = 2 we have

A− λI2 = A− 2I2 =

[
1 −1
2 −2

]
,

so the eigenvectors are nonzero solutions of the system{
x1 − x2 = 0

2x1 − 2x2 = 0
.

By inspection, this is equivalent to x2 = x1. The eigenvectors associ-
ated to λ = 2 are all vectors of the form[

t
t

]
= t

[
1
1

]
, 0 6= t ∈ R.

♣

Example 10.14. Find the eigenvectors of the matrixB =

 4 0 1
−2 1 0
−2 0 1


corresponding to the eigenvalues λ = 1, 2, 3 found in Example 10.10.

When λ = 1, the eigenvectors solve the system 3 0 1
−2 0 0
−2 0 0

x1x2
x3

 =

0
0
0

 .
The second and third rows give x1 = 0, which on substitution into
the first row gives x3 = 0. This leaves x2 as a free variable. So the
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eigenvectors associated to λ = 1 are0
s
0

 = s

0
1
0

 , 0 6= s ∈ R.

When λ = 2, the eigenvectors solve the system 2 0 1
−2 −1 0
−2 0 −1

x1x2
x3

 =

0
0
0

 .
The first and third rows give x3 = −2x1, and the second row gives
x2 = −2x1. Treating x1 as a free variable, we see that the eigenvectors
associated to λ = 2 are t

−2t
−2t

 = t

 1
−2
−2

 , 0 6= t ∈ R.

Finally, when λ = 3 the eigenvectors solve the system 1 0 1
−2 −2 0
−2 0 −2

x1x2
x3

 =

0
0
0

 .
The first and third rows give x3 = −x1, and the second row gives
x2 = −x1, so the eigenvectors associated to λ = 3 are u

−u
−u

 = u

 1
−1
−1

 , 0 6= u ∈ R.

♣

It can happen that the characteristic polynomial has a repeated
root λ. In that case, the eigenvectors associated to the eigenvalue λ
may not all be scalar multiples of each other.

Example 10.15. Find the eigenvalues and associated eigenvectors of
the matrix

C =

1 0 2
2 3 −2
4 0 −1

 .
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The eigenvalues are the roots of∣∣∣∣∣∣
1− λ 0 2

2 3− λ −2
4 0 −1− λ

∣∣∣∣∣∣ = (3− λ)
[
(1− λ)(−1− λ)− 8

]
= (3− λ)(λ2 − 9)

= (3− λ)(λ− 3)(λ+ 3),

so the eigenvalues are λ = −3 and λ = 3 (with multiplicity 2).
The eigenvectors associated to λ = −3 are nonzero solutions of the

system 4 0 2
2 6 −2
4 0 2

x1x2
x3

 =

0
0
0


∼

2 6 −2
0 −12 6
0 0 0

x1x2
x3

 =

0
0
0


which is easily solved by back-substitution, giving x3 = 2x2 and
x1 = −x2. These eigenvectors are therefore of the form−ss

2s

 = s

−1
1
2

 , 0 6= s ∈ R.

The eigenvalues associated to the repeated eigenvalue λ = 3 are
nonzero solutions to the system−2 0 2

2 0 −2
4 0 −4

x1x2
x3

 =

0
0
0


∼

−2 0 2
0 0 0
0 0 0

x1x2
x3

 =

0
0
0


which is solved by x1 = x3. Letting x1 and x2 be free parameters, we
have that the eigenvalues are of the formtu

t

 = t

1
0
1

+ u

0
1
0

 , 0 6= t, u ∈ R.

Here there are two types of eigenvector, corresponding to two different
directions in which the matrix C produces a scaling with scale factor
3. We say that the eigenspace associated to the eigenvalue λ = 3 is
two-dimensional. ♣
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10.16. More about the characteristic equation.

Proposition 10.17. A square matrix A is invertible if and only if it
does not have λ = 0 as an eigenvalue.

Proof. We can write the characteristic polynomial in the form

pA(λ) = det(A− λIn) = (−1)nλn + cn−1λ
n−1 + · · ·+ c1λ+ c0,

where the ci ∈ R are the coefficients. [Why is the leading coefficient
always (−1)n?] Upon setting λ = 0, we get

pA(0) = det(A) = c0.

Thus the constant term of pA(λ) is the determinant of A. It follows
that 0 is not a root of pA(λ) if and only if det(A) 6= 0. �

The above proof raises the question of whether the remaining co-
efficients in the characteristic polynomial pA(λ) can be expressed in
terms of known quantities associated to the matrix A. We’ll give the
answer in the (2× 2)-case.

Definition 10.18. The trace of an (n × n)-matrix A = [aij], denoted
tr(A), is the sum of its diagonal entries:

tr(A) = a11 + a22 + · · ·+ ann =
n∑
i=1

aii.

Proposition 10.19. The characteristic polynomial of a (2× 2)-matrix
A is given by

pA(λ) = λ2 − tr(A)λ+ det(A).

Proof. Exercise! �

Given any square matrix A, we can take its powers

Ak = A× A× · · · × A︸ ︷︷ ︸
k times

, k ∈ N.

Now given any real polynomial

p(x) = cnx
n + cn−1x

n−1 + · · ·+ c1x+ c0,

it makes sense to evaluate this polynomial at the matrix A, thus:

p(A) = cnA
n + cn−1A

n−1 + · · · c1A+ c0In.

Notice that the constant term gets multiplied by the identity matrix
of the appropriate size, so that this expression is defined as a matrix
sum.

We can now state the following curious result from Linear Algebra.
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Theorem 10.20 (The Cayley–Hamilton Theorem). Any square matrix
satisfies its own characteristic equation. That is, ifA is a square matrix
with characteristic polynomial pA(λ), then pA(A) = 0, the zero matrix.

There is a famous bogus proof of this Theorem which goes along
the lines of

pA(A) = det(A− AIn) = det(0) = 0.

To see why this is wrong, we just have to remember that pA(A) is a
matrix, while the determinant is a scalar.

Example 10.21. The Cayley–Hamilton Theorem is not just a curios-
ity. It can be used to calculate powers of square matrices. Take for
example the matrix

A =

[
3 −1
2 0

]
from Example 10.9. It satisfies its own characteristic equation, mean-
ing

pA(A) = A2 − 3A+ 2I2 = 0,

or equivalently,
A2 = 3A− 2I2.

Multiplying this equation repeatedly by A on the left, we find

A3 = 3A2 − 2A, A4 = 3A3 − 2A2, A5 = 3A4 − 2A3, . . . .

This gives a recursive method to calculate powers of A, without ac-
tually doing any matrix multiplication! One can easily check using
this method that

A2 =

[
7 −3
6 −2

]
, A3 =

[
15 −7
14 −6

]
, . . . .

♣

Suggestions for further reading:

• http://en.wikipedia.org/wiki/Eigenvalues_and_
eigenvectors
• Any book on Linear Algebra, such as H. Anton, Elementary

Linear Algebra.

http://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
http://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
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11. Diagonalization and diagonalizability

Recall from Section 9.11 that we computed the reflection matrix
Tα as a matrix product

Tα = Rα T0R−α

=

[
cosα − sinα
sinα cosα

] [
1 0
0 −1

] [
cosα sinα
− sinα cosα

]
.

This technique is quite prevalent in Linear Algebra, and is called
making a change of basis. Writing down the matrix Tα directly was
difficult because the standard coordinate axes were not suited to the
task at hand. By rotating the plane through −α we effectively chose
new coordinates in which we were able to solve the problem. Then by
rotating the plane back again through α, we converted the answer to
our easier problem into an answer to our original, harder problem.

Since it is easily verified that R−α = (Rα)−1, what we have actually
used is that the matrix Tα is similar to the diagonal matrix T0.

Definition 11.1. Let A and B be square matrices of the same size.
We say that B is similar to A if there exists some invertible matrix P
such that

B = P−1AP.

It follows that A is similar to B, since

A = PBP−1

and P−1 is an invertible matrix with (P−1)−1 = P . We may therefore
say that the matrices A and B are similar.

Similar matrices share a lot of the same properties.

Proposition 11.2. Let A and B be similar matrices. Then

(1) A and B have the same determinant;
(2) A is invertible if and only if B is invertible;
(3) A and B have the same characteristic polynomial;
(4) A and B have the same eigenvalues;
(5) A and B have the same trace.

The proofs of (1) and (3) are straightforward, and the other state-
ments follow from these two.

Diagonal matrices form a particularly nice class of matrices for
which many quantities associated to the matrix (such as its determi-
nant, inverse, eigenvalues and eigenvectors) can be read off directly.
It is therefore often useful to know that a matrix is similar to a diag-
onal matrix.
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Definition 11.3. A square matrix A is called diagonalizable if it is
similar to a diagonal matrix D. If P is an invertible matrix such that
P−1AP = D then P is said to diagonalize A.

The question arises, which matrices are diagonalizable? And how
do we find a diagonalizing matrix? The answer lies in the eigenvalues
and eigenvectors.

11.4. A criterion for diagonalizability.

Theorem 11.5. Let A be an (n× n)-matrix. Then A is diagonalizable
if and only if there is an invertible matrix

P =
[
x1 x2 · · · xn

]
whose columns are eigenvectors of A. If such a P exists, then

P−1AP =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn


where for i = 1, . . . , n the diagonal entry λi is the eigenvalue associ-
ated to the eigenvector xi.

Proof. Suppose there is an invertible matrix P =
[
x1 x2 · · · xn

]
whose columns are eigenvectors of A, and let λ1, λ2, . . . λn be associ-
ated eigenvalues. Then

AP = A
[
x1 x2 · · · xn

]
=
[
Ax1 Ax2 · · · Axn

]
=
[
λ1x1 λ2x2 · · · λnxn

]
=
[
x1 x2 · · · xn

] 
λ1 0 . . . 0
0 λ2 . . . 0
...

... . . . ...
0 0 . . . λn


= P D,

where D is the diagonal matrix of eigenvalues as in the statement of
the Theorem. Since P is invertible, we can multiply both sides of this
equation on the left by P−1, giving P−1AP = D as claimed.

Now supposeA is diagonalizable. Thus there is an invertible matrix
P and diagonal matrix D such that P−1AP = D. Multiplying on the
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left by P gives AP = PD. Write

P =
[
p1 p2 · · · pn

]
and D =


d1 0 . . . 0
0 d2 . . . 0
...

... . . . ...
0 0 . . . dn

 .
Then AP =

[
Ap1 Ap2 · · · Apn

]
and

PD =
[
p1 p2 · · · pn

] 
d1 0 . . . 0
0 d2 . . . 0
...

... . . . ...
0 0 . . . dn


=
[
d1p1 d2p2 · · · dnpn

]
.

Comparing columns of AP and PD, we see that Api = dipi for i =
1, . . . , n. Since P is invertible, its columns are all nonzero. Hence
they are eigenvectors of A with eigenvalues the diagonal entries di of
D. �

The above theorem gives a procedure for diagonalizing an (n× n)-
matrix:

(1) Find n eigenvectors x1, . . . ,xn of A which form the columns
of an invertible matrix P (if possible).

(2) The matrix P−1AP will then be diagonal with diagonal entries
λ1, . . . , λn the corresponding eigenvalues.

Example 11.6. Diagonalize the matrix

B =

 4 0 1
−2 1 0
−2 0 1


from Example 10.10.

We already found in Examples 10.10 and 10.14 the eigenvalues
and associated eigenvectors:

λ = 1 :

0
s
0

 , λ = 2 :

 t
−2t
−2t

 , λ = 3 :

 u
−u
−u


There are many possible choices for the columns of P . If we choose
the simplest possible eigenvectors (i.e, take s = t = u = 1) we get

P =

0 1 1
1 −2 −1
0 −2 −1
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which is invertible with inverse

P−1 =

 0 1 −1
−1 0 −1
2 0 1


(check for yourself!). According to Theorem 11.5, we should have
P−1BP = D where D is the diagonal matrix with the eigenvalues of
B on the diagonal. One easily checks that 0 1 −1

−1 0 −1
2 0 1

 4 0 1
−2 1 0
−2 0 1

0 1 1
1 −2 −1
0 −2 −1

 =

1 0 0
0 2 0
0 0 3


as claimed.

Note that we could choose to write the columns of P in a different
order. We would still get a diagonalizing matrix, and the eigenvalues
showing up on the diagonal would be ordered correspondingly. For
instance, we could take

P ′ =

 1 0 1
−2 1 −1
−2 0 −1


as our diagonalizing matrix, giving

(P ′)−1BP ′ =

2 0 0
0 1 0
0 0 3

 .
♣

It is not always possible to find an invertible matrix P whose
columns are eigenvectors, as the following example shows.

Example 11.7. Show that the matrix

U =

1 1 1
0 1 1
0 0 1


is not diagonalizable.

Since U is upper-triangular, one sees by inspection that the char-
acteristic polynomial is pU(λ) = (1 − λ)3. Hence there is only one
eigenvalue λ = 1 with multiplicity 3. The eigenvectors solve0 1 1

0 0 1
0 0 0

x1x2
x3

 =

0
0
0
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and so are of the form

s0
0

 = s

1
0
0

 where 0 6= s ∈ R. Since all of

the eigenvectors are scalar multiples of each other, any matrix whose
columns are formed from the eigenvectors will have determinant zero.
Therefore U is not diagonalizable. ♣.

To make precise what’s going on here, we introduce the important
notion of linear independence.

Definition 11.8. A set of vectors {v1, . . . ,vr} in Rn is said to be
linearly independent if no vector in the set can be written as a sum of
scalar multiples of the other vectors in the set. More formally, the set
{v1, . . . ,vr} is linearly independent if whenever we have an equality
of the form

k1v1 + · · ·+ krvr = 0, ki ∈ R
it follows that k1 = · · · = kr = 0. A set of vectors which is not linearly
independent is called linearly dependent.

To see the equivalence of the two definitions, suppose we have an
equality

k1v1 + k2v2 + · · ·+ krvr = 0

where the ki are not all zero (so that the set {v1, . . . ,vr} is linearly
dependent). We can assume, without loss of generality, that k1 is
nonzero. Then we can rearrange to get

v1 = −k2
k1

v2 − · · · −
kr
k1

vr

which shows that v1 is a sum of multiples of the other vectors in the
set. Conversely, if, say,

v1 = `2v2 + · · ·+ `rvr

is a sum of scalar multiples of the other vectors in the set, then we
have an equality of the form

`1v1 − `2v2 − · · · − `rvr = 0

where `1 = 1 6= 0.

Example 11.9. The vectors

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1
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form a linearly independent set in R3. For suppose k1, k2, k3 ∈ R and

k1e1 + k2e2 + k3e3 =

k1k2
k3

 =

0
0
0

 .
Then it follows that k1 = k2 = k3 = 0. ♣

Example 11.10. The vectors

v1 =

1
1
0

 , v2 =

 0
1
−1

 , v2 =

3
2
1


form a linearly dependent set in R3. To see this, it suffices to note
that 3v1 − v2 = v3. ♣

Lemma 11.11. Let P =
[
v1 · · · vn

]
be an (n× n)-matrix. Then P

is invertible if and only if the set of columns {v1, . . . ,vn} is a linearly
independent set in Rn.

Proof. We know from our study of linear systems that P is invertible
if and only if the linear system Px = 0 has only the trivial solution
x = 0. We can write this linear system as

x1v1 + x2v2 + · · ·+ xnvn = 0.

To say that x1 = x2 = · · · = xn = 0 is the only solution is precisely the
same as saying that the set {v1, . . . ,vn} of columns of P is linearly
independent. �

Theorem 11.12. An (n × n)-matrix A is diagnonalizable if and only
if it admits n linearly independent eigenvectors.

Proof. This follows immediately from Theorem 11.5 and Lemma 11.11.
�

Proposition 11.13. Let x1, . . . ,xr be eigenvectors of the (n×n)-matrix
A corresponding to distinct eigenvalues λ1, . . . , λr. Then {x1, . . . ,xr}
is a linearly independent set in Rn.

Proof. Not given. �

Corollary 11.14. If an (n×n)-matrixA has n distinct real eigenvalues,
then A is diagonalizable.

The converse to this result would say that a diagonalizable matrix
has (n × n)-matrix has n distinct eigenvalues. This is false, as the
following example shows.
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Example 11.15. Recall the matrix

C =

1 0 2
2 3 −2
4 0 −1


from Example 10.15. The eigenvalues and corresponding eigenvec-
tors were found there to be

λ = −3 :

−ss
2s

 , λ = 3 :

tu
t

 = t

1
0
1

+ u

0
1
0

 .
The eigenvectors

1
0
1

 and

0
1
0

 corresponding to the repeated eigen-

value λ = 3 are clearly linearly independent, and so

P =

−1 1 0
1 0 1
2 1 0


is a diagonalizing matrix for C. ♣

11.16. Applications of diagonalization. We now begin to reap the
rewards of our hard work. The first application of diagonalization
is to computing large powers of square matrices. We first note that
computing powers of diagonal matrices is easy.

Lemma 11.17. Let

D =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn


be a diagonal matrix, and let k ∈ N be a natural number. Then

Dk =


λk1 0 . . . 0
0 λk2 . . . 0
...

...
. . .

...
0 0 . . . λkn

 .
Proof. By induction on k and the definition of matrix multiplication.
We omit the details. �

Now suppose that the square matrix A is diagonalizable, with di-
agonalizing matrix P . This means that P−1AP = D, where D is a
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diagonal matrix. Left-multiplying by P and right-multiplying by P−1,
we obtain

A = PDP−1.

This enables easier computation of the powers Ak for k ∈ N, since we
have

Ak = (PDP−1)(PDP−1) · · · (PDP−1)︸ ︷︷ ︸
k times

= PD(P−1P )D(P−1P ) · · ·D(P−1P )DP−1

= P DIDI · · ·DI︸ ︷︷ ︸
k−1 times

DP−1

= PDkP−1,

and Dk is readily computed by the Lemma.

Example 11.18. Diagonalize the matrix A =

[
4 2
−3 −1

]
, and hence

compute A6.
One finds without too much difficulty the eigenvalues and associ-

ated eigenvectors

λ = 1 :

[
−2s
3s

]
for 0 6= s ∈ R, λ = 2 :

[
t
−t

]
for 0 6= t ∈ R.

We can take P =

[
−2 1
3 −1

]
as our diagonalizing matrix, with

inverse

P−1 =
1

−1

[
−1 −1
−3 −2

]
=

[
1 1
3 2

]
.

We then have A = PDP−1, where D =

[
1 0
0 2

]
. It follows that

A6 = PD6P−1

=

[
−2 1
3 −1

] [
1 0
0 64

] [
1 1
3 2

]
=

[
−2 1
3 −1

] [
1 1

192 128

]
=

[
190 126
−189 −125

]
.

♣



MA1006 ALGEBRA 91

Remark 11.19. We now have two methods of computing powers of
square matrices: diagonalization and the Cayley–Hamilton Theorem
(compare Example 10.21). Each have their strengths and weak-
nesses. The Cayley–Hamilton method applies to any matrix, but
can be cumbersome due to its recursive nature (to calculate a given
power we have to calculate all the preceding powers). The diagonal-
ization method is non-recursive, but can only be used to find powers
of diagonalizable matrices.

Our next application of diagonalization is to matrix exponentiation.

Definition 11.20. The exponential of an (n × n)-matrix A is the
square matrix

eA = In + A+
1

2!
A2 +

1

3!
A3 + · · ·+ 1

k!
Ak + · · ·

=
∞∑
k=0

1

k!
Ak.

Since we are adding together infinitely many matrices, it is not
at all obvious that the sum converges to some matrix with finite
entries. It does, however, and for all square matrices A. Computing
the entries of eA in terms of the entries of A is a difficult problem in
general. It becomes easier for diagonal and diagonalizable matrices.

Lemma 11.21. Let D be a diagonal matrix with diagonal entries
λ1, . . . , λn. Then its exponential eD is a diagonal matrix with diag-
onal entries eλ1 , . . . , eλn.

Proof. We have

eD =
∞∑
k=0

1

k!
Dk.

Each matrix Dk in the sum is a diagonal matrix with diagonal entries
λk1, . . . , λ

k
n, by Lemma 11.17. It follows that eD is a diagonal matrix

with diagonal entries
∞∑
k=0

λk1
k!

= eλ1 , . . . ,

∞∑
k=0

λkn
k!

= eλn

as claimed. �

This makes computing the exponential of a diagonalizable matrix
A an easier task. We simply write A = PDP−1 where D is diagonal,
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and then

eA =
∞∑
k=0

1

k!
PDkP−1 = P

(
∞∑
k=0

1

k!
Dk

)
P−1 = PeDP−1.

Example 11.22. The exponential of the matrix A from Example
11.18 is given by

eA = PeDP−1

=

[
−2 1
3 −1

] [
e 0
0 e2

] [
1 1
3 2

]
=

[
−2e+ 3e2 −2e+ 2e2

3e− 3e2 3e− 2e2

]
.

♣

Matrix exponentials occur in many areas of Mathematics. Their
main application in Science and Engineering is to the solution of
systems of 1st order linear differential equations.

The following is non-examinable, and may only be understandable
if you have studied differential equations before.

Let x = x(t) be a function of the variable t. We write x′ for the first

derivative
dx

dt
, which is also a function of t. Recall that the (1st order,

linear) differential equation

x′ = ax, a ∈ R constant

has as its general solution

x = Ceat = eatC, where C ∈ R is an arbitrary constant.

(It will become clear why we have moved the constant to after the
exponential in a moment.)

Now suppose that we wish to solve a system of 1st order linear
differential equations {

x′1 = ax1 + bx2
x′2 = cx1 + dx2

.

This system can be written as the single matrix differential equation
x′ = Ax, where

x′ =

[
x′1
x′2

]
, x =

[
x1
x2

]
and A =

[
a b
c d

]
.

The general solution is then given by

x = etAC, where C =

[
C1

C2

]
∈ R2 is an arbitrary constant.
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Thus to solve the system we are required to compute the exponential
of a matrix, which requires diagonalization.

Example 11.23. Solve the system of differential equations{
x′1 = 4x1 + 2x2
x′2 = −3x1 + −x2

.

In matrix form this is x′ = Ax, where A is the matrix from Example
11.18. Since

tA = P

[
t 0
0 2t

]
P−1,

we find

etA =

[
−2 1
3 −1

] [
et 0
0 e2t

] [
1 1
3 2

]
=

[
−2 1
3 −1

] [
et et

3e2t 2e2t

]
=

[
−2et + 3e2t −2et + 2e2t

3et − 3e2t 3et − 2e2t

]
.

The general solution is then[
x1
x2

]
= etAC

=

[
−2et + 3e2t −2et + 2e2t

3et − 3e2t 3et − 2e2t

] [
C1

C2

]
=

[
(−2et + 3e2t)C1 + (−2et + 2e2t)C2

(3et − 3e2t)C1 + (3et − 2e2t)C2

]
=

[
(−2C1 − 2C2)e

t + (3C1 + 2C2)e
2t

(3C1 + 3C2)e
t + (−3C1 − 2C2)e

2t

]
.

♣

Remark 11.24. Note that in the above example, the general solution
could also be written as

x = eλ1tv1 + eλ2tv2,

where v1 and v2 are the eigenvectors ofAwith associated eigenvalues
λ1 and λ2.

Suggestions for further reading:

• http://en.wikipedia.org/wiki/Diagonalizable_matrix
• Any book on Linear Algebra, such as H. Anton, Elementary

Linear Algebra.

http://en.wikipedia.org/wiki/Diagonalizable_matrix
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