
E-150 ASSIGNMENT 3 (100 POINTS)

MODELING AND SIMULATION OF ROBOTIC 3D PRINTERS

Due: Thursday, October 24th, 3:30 pm

In this project, you will simulate the operation of a free-form robotic 3D printer. Referring to
Figure 1, the printer arm deposits electrically charged droplets above a substrate, with the substrate
electrically charged in certain areas to attract the droplets. Using the simulation, you will employ
a genetic algorithm to find control parameters that generate a printed pattern as close to a desired
pattern as possible.

DYNAMICS OF 3D PRINTER ARM

Figure 1: Coordinate System and Robot Schematic

We model the 3D printer arm as a three-rod linkage, with the first end of the first rod fixed and
the free end of the third rod having the droplet dispenser. The first two rods are x−y planar, and the
third rod is x−z planar, with all of their angular velocities constant. Note that the coordinates
are such that the y axis is vertical. Given initial angular positions Θ0

j , j = {1, 2, 3}, angular
velocities Θ̇j , and rod lengths Lj , we can add up the rod rotations, as well as the position of the
fixed end r0, to get the dispenser position components rd = r0 + (xd, yd, zd):

xd = L1 cos Θ1 + L2 cos Θ2 + L3 sin Θ3 (1)

yd = L1 sin Θ1 + L2 sin Θ2 (2)

zd = L3 cos Θ3 (3)
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Θj = Θj(t) = Θ0
j + Θ̇jt (4)

The time derivative of the dispenser position yields its velocity components vd = (ẋd, ẏd, żd):

ẋd = −L1Θ̇1 sin Θ1 − L2Θ̇2 sin Θ2 + L3Θ̇3 cos Θ3 (5)

ẏd = L1Θ̇1 cos Θ1 + L2Θ̇2 cos Θ2 (6)

żd = −L3Θ̇3 sin Θ3 (7)

To tie this in with the droplet dynamics, when the printer arm deposits a droplet, we initialize
the droplet’s position and velocity r0

i ,v
0
i with the current rd,vd at that time, adding a relative

droplet dispenser velocity ∆vd for the added velocity of "pushing" the droplet out:

r0
i = rd, v0

i = vd + ∆vd (8)

This gives us an initial condition for integrating to find a droplet’s position and velocity.

DYNAMICS OF DROPLETS

We model the deposited droplets as lumped masses, moving as solid spheres of radius R. Using
Newton’s second law, accounting for gravitational, electric, and drag forces, the governing equation
for some i-th droplet is:

mir̈i = Ψtot
i = F grav

i + F elec
i + F drag

i (9)

Where mi is the mass of the droplet, r̈i is the droplet’s acceleration, and the three F are the
gravitational, electric, and drag forces respectively.

In the coordinate system in Figure 1, the y axis is vertical, so we note the gravitational force is
defined as

F grav
i = (gx, gy, gz) = (0,−mig, 0) (10)

where g is gravitational acceleration. For the electrical force, we model the droplet as a lumped
charge with some charge qi and the charged substrate as a set of Nc fixed-position point charges
with charge qp and position rp. Then, the electrical field and corresponding force is simply a sum
of the electrical forces, neglecting the electrical forces between droplets:

F elec
i =

Nc∑
p=1

qpqi
4πε‖ri − rp‖2

(ri − rp) (11)

Where ε is the permittivity, which we approximate as the free-space permittivity ε = ε0 provided
in the table at the end of this document. Lastly, the drag force depends on the geometry of the
droplet and the properties of the surrounding medium:

F drag
i =

1

2
ρaCDi‖vf − vi‖(vf − vi)A

D
i (12)

Where ρa is the density of the surrounding medium, CDi is the drag coefficient, vf is the velocity
of the surrounding medium, vi = ṙi is the droplet velocity, and ADi = πR2 is the drag reference
area. To determine the drag coefficient, we first determine the Reynolds number of the droplet Re:
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Re =
2Rρa‖vf − vi‖

µf
(13)

Where µf is the viscosity of the surrounding medium. Then, the drag coefficient is a piecewise
function of Re:

CDi =



24
Re , 0 < Re ≤ 1

24
Re0.0646 , 1 < Re ≤ 400

0.5, 400 < Re ≤ 3× 105

0.000366Re0.4275, 3× 105 < Re ≤ 2× 106

0.18, Re > 2× 106

(14)

Thus we have the governing equation for the droplet’s motion, which we will numerically inte-
grate using the Forward Euler method.

EFFECTIVE MATERIAL PROPERTIES OF DROPLETS

The droplets are assumed to be a mixture of two phases (materials), which has an effective
density ρ∗ and electrical charge capacity per unit volume q∗, assuming both phases may carry some
kind of electrical charge per unit volume. These effective properties are needed for the lumped
droplet charge qi = Viq

∗, and mass mi = Viρ
∗.

The effective density formula and charge capacity is exact based on the volume fraction and the
two phases’ individual density and charge capacity ρ1, ρ2, 〈q1〉, 〈q2〉:

ρ∗ = (1− v2)ρ1 + v2ρ2 (15)

q∗ = (1− v2)〈q1〉+ v2〈q2〉 (16)

These equations can be used to determine the effective properties for the droplets. We note that
these properties are equal for all deposited droplets, and only need to be calculated once.

FORWARD EULER INTEGRATION

We employ equations 9 (and the other equations needed to evaluate this one) and solve for r̈i.
We use a Forward Euler scheme to integrate and find the position and velocity of some i-th droplet:

ri(t+ ∆t) = ri(t) + ∆tvi(t) (17)

vi(t+ ∆t) = vi(t) + ∆tr̈i(t) (18)

The robot arm dynamics dictate a droplet’s initial conditions ri(t = 0),vi(t = 0). Note that
once a droplet reaches the substrate, the position should not change any more as we assume the
droplet binds to the print bed.

GENETIC ALGORITHM

This assignment has two parts: (1) a model where you implement the full physics model of the
droplet dynamics and numerically integrate to determine the final pattern and (2) a simplified model
in which we neglect the effects of drag and “turn off" the electrical field, then use a genetic algorithm
to find the angular velocities that best recreate a given pattern. The free design parameters are the
robot arm angular velocities and the relative dispenser velocity. As such, we formulate the following
design string:
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Λi = {Θ̇1, Θ̇2, Θ̇3,∆vd} (19)

A simple cost function in this case, if given a desired position rdesi for each of Nd deposited
droplets, would be:

Π =

∑Nd
i=1 ‖rdesi − rgeni ‖∑Nd−1
i=1 ‖rdesi − rdesi+1‖

(20)

where rgeni = rgeni (Λi) are the droplet positions generated by a given genetic string. Note that the
denominator of this expression is the arc length of the desired pattern, and is used to nondimen-
sionalize the cost function and ensure that the tolerance scales with the size of the pattern. We also
assume that ∆vd is only in the vertical downward direction (a single component) so it only adds
one value to the design string rather than three components. Initial ranges of values are given in
the variable glossary.

PART 1: FULL MODEL WITH ELECTRICAL FORCES

In the first part of this assignment we model the droplets’ dynamics, with droplets deposited
for each of Nt time steps, not including t = 0, for a total droplet count Nd = Nt. We place several
point charges on a print surface at y = 0, with a 10-by-10 grid of points each with charge qp. Center
the grid at the origin within a square with sides of length Lbed. To generate the grid positions (same
for both x and z components), you can use linspace(-Lbed/2, Lbed/2, 10) and meshgrid(). We
model the printer arm extruding for a total simulation time T = 3 seconds, such that the time
step size ∆t = T/Nt with ∆t = 0.001 seconds. After all the droplets are extruded, continue the
simulation with the same time step size until all droplets land on the substrate.

1. For all requested plots below, plot the point charges on the same figure. For visualization, let
the boundary created by the point charges define the boundary created by the print bed.

2. Provide a plot of the final droplet pattern in a "top-down" (z − x) view. Color each droplet
according its flight time (i.e. time in the air) using scatter and show the color axis with
colorbar. Be sure to label your color-bar with title and units.

3. Provide a 3D plot of the tool path of the robot arm’s dispenser end with the beginning and
end of the tool-path marked on the same plot as the print pattern on the print bed with the
first and last droplet marked. Be sure to label these points using a legend.

4. Explain why you think the resulting droplet pattern occurred.

5. Set the electrical force to 0. Compare the animations and final configurations of the droplets
with and without the electrical force. What role does the electrically charged substrate have
on the motion of the droplets? It is up to you how to present this comparison, but be sure it
is clear in your report. What adversary force does the electrical force assist against?

PART 2: SIMPLIFIED FREE FALL MODEL WITH GENETIC ALGORITHM

For the simplified model, we change the following:

• Remove drag from the model.

• Remove the electrical forces, leaving only gravity.
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In doing so, our droplet dynamics reduces to a free fall model. The extruder model does not change
from Part 1. Because our droplets only move by gravity, they are under constant acceleration, and
thus the final position of the droplets can be solved for analytically. You should solve for that
analytical solution and use it in your code. Do not use time stepping for this part of the project.

Here, we provide a data file robotprint_data.mat which contains a variable ri, a 3×Nd array
where each column is a droplet’s final position components with the columns ordered according to
extrusion time. The aim of your genetic algorithm is to try and reproduce the design string Λdes

that produced the desired droplet positions rdesi by minimizing Π. Set the tolerance of this cost
function to Tol = 2× 10−2.

1. Analytically solve for the final position of the droplets on the print if they are in free fall.
Show the steps to your derivation. Hint: Use constant acceleration kinematic equations from
physics.

2. Describe the parameters you used in your GA. Use S = 100 genetic strings, P = 10 parents
which generate P = 10 children in the same ordering as previous projects.

3. Provide a z − x "top-down" plot of the final droplet pattern on the same plot as the desired
droplet pattern provided in the data file. How well does your design string follow the desired
pattern? Use the provided helper function comparepattern.p to compare your generated
pattern to your desired pattern.

4. Provide a convergence plot showing the total cost of the best design, the mean of all parent
designs, and the mean of the overall population for each generation.

5. Report your best-performing 4 designs in a table similar to the following.

DESIGN Λ1 Λ2 Λ3 etc Π

1
2
3
4

Table 1: The top 4 system parameter performers.

Note, comparepattern.p works by running the simulation for your inputted design string, cal-
culating Π(Λi) and outputting the comparison plot. As such, its access is restricted and you cannot
view the content of the file. You may not use this function to run the simulation for your GA code.
Credit will only be received for codes which create the model themselves. This function is simply a
tool to allow you to easily visualize your results and generate plots for your report. The function
has the following syntax: PI = comparepattern(t1d,t2d,t3d,vdR) where t1d= Θ̇1, t2d= Θ̇2,
t3d= Θ̇3, vdR= ∆vd and are all 1 × 1 scalars representing the parameters from a single genetic
string Λi.

For your report, please follow the format provided on bCourses in the file E150ReportFormat.pdf.
Integrate the questions asked above into your report where you deem appropriate.

5



To submit your assignment:

1. Upload a zip file to bCourses containing your code (as a .m file, .py file, etc) and any supporting
files required to run your code.

2. Upload a PDF version of your report separately from the zip file (this simplifies grading). To
save paper, electronic-only submission of your report is encouraged. This makes it
possible to include colored graphs without paying for color printing. If you prefer to receive
feedback on a printed copy, you may still submit one to the box outside 6102 Etcheverry Hall
or during lecture.
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VARIABLE GLOSSARY

Symbol Type Units Value Description
r0 3× 1 vector m (0, 0.5, 0) Fixed arm end position

xd, yd, zd scalars m Equations 1-3 Dispenser position
Θj scalars radians Equation 4 Rod angles

Θ0
1,Θ

0
2,Θ

0
2 scalars radians π/2, 0, 0 Initial rod angles

Θ̇1,Θ̇2,Θ̇3 scalar rad/s 0.2,-0.2,10 Link 1,2,3 angular velocity
Lbed scalar m .8 charged grid side length

L1, L2, L3 scalars m .3, .2, .08 Rod lengths
ẋd, ẏd, żd scalars m/s Equations 5-7 Dispenser velocity

r0
i 3× 1 vector m Equation 8 Initial droplet position
ri 3× 1 vector m Equation 27 Droplet position
v0
i 3× 1 vector m/s Equation 8 Initial droplet velocity

vi 3× 1 vector m/s Equation 28 Droplet velocity
r̈i 3× 1 vector m/s2 Equation 9 Droplet acceleration

F grav
i ,F elec

i ,F drag
i 3× 1 vectors N Equations 10-12 Gravitational, electric, and drag forces

g scalar m/s2 9.81 Gravitational acceleration
mi scalar kg Viρ

∗ Droplet mass
ε scalar F/m 8.854× 10−12 Electric permittivity
qi scalar C Viq

∗ Droplet charge
rp 3× 1 vector m (varies) Point charge position(s)
Vi scalar m3 (4/3)πR3 Droplet volume
R scalar m 0.001 Droplet radius
v2 scalar unitless 0.25 Phase 2 volume fraction
ρ∗ scalar kg/m3 Equation 24 Effective density
ρ1 scalar kg/m3 2000 Phase 1 density
ρ2 scalar kg/m3 7000 Phase 2 density
q∗ scalar C / m3 Equation 26 Effective charge capacity
q1 scalar C / m3 0 Phase 1 charge capacity
q2 scalar C / m3 +1e-3 Phase 2 charge capacity

∆vd 3× 1 vector m/s (0, -1.2, 0) Relative extrusion velocity
qp scalar C −8× 10−5 Grid pixel charge
vf 3× 1 vector m/s (0.5, 0, 0.5) Surrounding medium velocity
ρa scalar kg/m3 1.225 Surrounding medium density
µf scalar Pa/s 1.8× 10−5 Surrounding medium viscosity
CDi scalar unitless Equation 14 Drag coefficient
ADi scalar m2 πR2 Drag reference area
∆t scalar seconds 0.001 Time Step Size
T scalar seconds 3 Total Simulation Time

Θ̇−1 , Θ̇
+
1 scalar rad/s [15, 16] Search bounds for Θ̇1

Θ̇−2 , Θ̇
+
2 scalar rad/s [15, 16] Search bounds for Θ̇2

Θ̇−3 , Θ̇
+
3 scalar rad/s [6, 7] Search bounds for Θ̇3

∆vd,−,∆vd,+ scalar m/s [-3.5, -3] Search bounds for ∆vd
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