
The Law of Multiple Proportions 
 
Background 
 
 The beginning of the wide acceptance of a modern atomic view of chemical change is generally 
traced back to the early 1800's and John Dalton's various publications which alternately philosophized, 
cajoled and demonstrated with simple (and somewhat inaccurate) data that the concept of indivisible 
particles which gave each kind of matter its unique characteristics was all but obvious. 
 
 The prior work of Lavoisier (who demonstrated conservation of mass during chemical change) 
and Proust (who formulated the law of definite composition) served as the perfect backdrop for Dalton's 
theorization which had an unlikely beginning with his keen interest in the weather and eventually 
culminated in a statement of partial pressure behavior among gases (correct but based on false ideas) and 
the law of multiple proportions with which he sought to further cement the idea of constant mass among 
identical atoms and advance his own ideas about how atoms might combine to form compounds. 
 
 If Dalton's experimental skills were somewhat weak, his intellect was certainly not in question--
at least not to the locals of Manchester who hired him to teach school at the age of twelve! (Dalton was 
forced to leave school as a student the year before in order to seek gainful employment). He kept very 
careful daily records of the weather (a pastime which Jacob Bronowski described as a "singularly 
monotonous task" considering the Manchester climate) and was led to wonder by his observations about 
the nature of gases (which he called elastic fluids) and phase changes. He eventually concluded that 
when water evaporated it changed from the liquid state to a gas which mixed with the gases already 
known to be present in the air (principally nitrogen--which he called azote--and oxygen). The mixing of 
gases intrigued Dalton and got him to thinking about forces of attraction and repulsion which might 
either enable or prevent mixing of gases. He thought that atoms of the same element might repel each 
other but attract different atoms and so that would result in spaces between similar atoms into which 
others might fit. In his view this would prevent the "settling out" of heavier gases and make each gas 
contribute to part of the total pressure in proportion to its quantity. Clearly heavy gases did not settle out 
of mixtures and simple experiment confirmed his suspicions regarding partial pressure. 
 
 Dalton's attempt at sorting out how elements combine to form compounds was grounded in his 
simple ideas about repulsive and attractive forces among atoms and Proust's data supporting the law of 
definite composition. Dalton's major (and stubbornly held) error was in interpreting the data. He insisted 
that the simplest compound of two elements would be binary, e.g., water would be HO. There might be 
other combinations (he was aware of several different oxides of nitrogen) but there would always be a 
1:1 combination. 
 
 Since hydrogen was the lightest known element it made sense to Dalton to assign it a relative 
mass of 1. Proust had shown that in water the mass ratio of hydrogen to oxygen was always 1:8. 
Therefore, oxygen had a relative mass of 8 [actually, the data were not that good and 7 was the value 
Dalton chose for oxygen; coupled with his erroneous assumptions about the nature of simple 
compounds, this resulted in a seriously faulty relative mass scale]. Proceeding on similar assumptions, 
Dalton created a table of relative masses for known elements.  
 
 
 
 
Adapted from Chemical Principles in the Laboratory, 4th ed., Emil J. Slowinski, Wayne C. Wolsey, William              
L. Masterton 
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Dalton's Table of Elements, 1803 

 
 
 Dalton further hypothesized--based on known compounds--that it was possible for elements to 
form different compounds if their atoms were attracted to one another in different proportions. He used 
as evidence for this hypothesis substances like carbon monoxide and carbon dioxide, as well as the 
various oxides of nitrogen such as NO, NO2 and N2O. But keeping to his fundamental idea that atoms 
were indivisible and only rearrangement of atoms was involved in chemical change, he insisted on 
integer mass ratios relating the variable element in such compounds. 
 
 The case of CO and CO2 is particularly simple for illustrating the law of multiple proportions. 
The element of "constant mass" is carbon (taking today's relative mass, 12). The mass of oxygen in the 
two compounds varies. It is 16 in carbon monoxide and 32 in carbon dioxide. These two values are in a 
simple whole number ratio, i.e., 16:32 = 1:2.  
 
 The law can be applied to slightly more complicated cases with just a little more work. For 
example, N2O3 and NO are not as obviously related. If we select nitrogen as the "constant mass" in this 
pair of compounds, we will have to take two NO to compare with one N2O3: 
 

Compound mass of nitrogen mass of oxygen 
N2O3 28 48 
2 NO 28 32 

 
The masses of the variable element (oxygen) are in a 48:32 ratio. This is 3:2. 
 
 Illustrating the Law of Multiple Proportions in a laboratory exercise presents no special 
challenge. One of a number of fairly common compounds can be used with good results. In particular, 
copper(II) bromide makes an excellent choice for a variety of reasons. The chemistry behind its eventual 
decomposition into elements is both visually and theoretically interesting and fairly easy to coax into 
convenient "steps" along the way from CuBr2 to CuBr and then finally to Cu. 
 
 The bond between copper and bromine in the compound is not especially strong. The 
electronegativity difference between the two elements is only 0.9, indicating a significant degree of 
covalent character. The bond is weak enough that the heat from a Bunsen burner is sufficient to initiate 
partial decomposition: 
 

CuBr2(s) → CuBr(s) + Br2(g)       [not balanced] 
 

A close look at this reaction reveals that the bromine is an oxidation product and the copper in the 
compound has been reduced. 
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 Copper(I) bromide can be further decomposed by heat but only with difficulty using a Bunsen 
burner. Instead, an excess of nitric acid is used to decompose the compound into bromine and aqueous 
copper(II) ions: 
 

CuBr(s) + NO3
-(aq) + H+(aq) → Cu2+(aq) + Br2(g) + NO(g) + H2O(ℓ)    [not balanced] 

 
In contact with oxygen from the air NO becomes NO2. The bromine can be driven off by heating.  
 

Continued heat removes the water from the system and the residual solid copper(II) nitrate will 
begin to decompose: 
 

 Cu(NO3)2(aq) → CuO(s) + NO2(g) + O2(g)    [not balanced] 
 
 Because the amount of copper in the experiment theoretically remains constant, it is possible to 
use the mass data for each compound to illustrate the law of multiple proportions if that constant mass of 
copper can be determined.  
 

The reduction of CuO to copper metal can be accomplished in a variety of ways. Historically this 
kind of process has been done by heating the metal oxide in a reducing atmosphere of hydrogen or even 
methane. Both of these gases form explosive mixtures with oxygen or air and therefore there are reasons 
not to employ such methods if good alternatives are available. 
 
 If the copper oxide is dissolved in dilute acid, copper(II) ions become available in solution. The 
addition of a more active metal such as zinc will then initiate a quantitative displacement of copper 
metal which can be recovered and compared to the masses of each compound in the step-by-step 
conversion process. If a slight excess of acid is used, any leftover zinc metal will displace hydrogen 
from the mixture and go into solution and is easily separated from the solid copper product. 
 
The Experiment 
 
 There are three parts to this experiment: 
 

• the conversion of copper(II) bromide to copper(I) bromide 
• the conversion of copper(I) bromide to copper(II) oxide 
• the reduction of copper(II) oxide to copper metal 

 
The following non-locker materials will be provided: 
 

• glass tubing and tubing cutters 
• 18 x 150 test tube with 1-hole stopper 
• utility clamp with plain metal jaws 
• 500 mL Florence flask 
• approx. 0.1 M NaOH 
• 16 M HNO3 [fume hood] 
• 6 M HCl 
• granular zinc 
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The Chemicals 
 

Copper(II) bromide is an almost black, iodine-like solid in either fine, deliquescent crystals or 
powder form. It is very soluble in water and melts at 498oC. It is used in photographic work, organic 
synthesis (as a brominating agent), as a wood preservative and in some solid-electrolyte batteries. 

 
Bromine is a dark reddish-brown fuming liquid at room temperature, consisting of diatomic 

molecules. In dilute water and hexane solutions its color varies from golden to dark orange. In basic 
solutions at room temperature it slowly reacts to form bromide and hypobromous ions. It is a member of 
the halogen family and has a chemistry similar to chlorine. It attacks all metals and organic tissues and 
vaporizes readily at room temperature. Fumes are highly irritating to eyes and lungs. 
 

Bromine is used for bleaching silk, disinfecting spas, and manufacturing anti-knock compounds. 
Pure liquid bromine on the skin can cause painful, serious burns which heal only slowly. 
 

Nitric acid has been called "aqua fortis" (strong water). It is generally produced by the oxidation 
of ammonia followed by reaction of the gaseous products with water. When pure it is a colorless liquid 
that fumes in air with a characteristic choking odor. "Concentrated" nitric acid is a water solution 
containing 70% HNO3 (16 M). Even dilute solutions will stain woolen fabrics and animal tissue yellow. 
It is a very strong oxidizing agent, reacting violently with most organic matter.  
 

Nitric acid is used in the manufacture of fertilizers, dye intermediates and explosives. 
 
Nitrogen oxides produced in this experiment include nitrogen monoxide (NO) and nitrogen 

dioxide (NO2), collectively known as NOx. The former is a colorless gas which is deep blue as a liquid. 
It is used in large quantities in the manufacture of nitric acid. When in contact with air NO immediately 
reacts to form NO2. This second gas is reddish-brown and is an equilibrium mixture of the colorless 
dimer, N2O4, and the colored NO2. The gas decomposes in water to form nitric acid and NO and reacts 
with alkalis to form nitrites and nitrates. It is used in the manufacture of both nitric and sulfuric acids 
and has been proposed as an oxidizing liquid in rocket propulsion. 

 
Nitrogen dioxide is extremely toxic. As little as 200 ppm can be fatal. Oxides of nitrogen are 

produced as by-products in internal combustion engines and contribute to air pollution and acid rain. 
They can also catalyze the decomposition of ozone in the upper atmosphere. 

 
Sodium hydroxide is commonly known as lye or caustic soda. It is a very hygroscopic white solid 

(absorbs water from the air rapidly) and also absorbs CO2. It is very corrosive to vegetable and animal 
matter and aluminum metal, especially in the presence of moisture. Dissolving NaOH in water generates 
considerable heat.  
 

Besides its use in the laboratory, sodium hydroxide is used in commercial drain cleaner 
preparations, to treat cellulose in the manufacture of rayon and cellophane and in the manufacture of 
some soaps. It is corrosive to all tissues and can be detected on skin by the "slimy" feeling associated 
with bases. It should be rinsed off thoroughly upon contact. It can damage delicate eye tissues and cause 
blindness. 
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Hydrochloric acid is also known as muriatic acid. It is the same liquid acid that is often used in 
controlling the pH of swimming pool water. It is sometimes colored yellow by iron impurities, traces of 
chlorine and organic matter. Reagent grade HCl contains about 38% hydrogen chloride gas, close to the 
limit of its solubility at room temperature.  
 

Hydrochloric acid in concentrated form (12 M) has the sharp, choking odor of hydrogen 
chloride. It is used in the production of other chlorides and in refining some ores (tin and tantalum), 
cleaning metal products, removing scale from boilers and heat-exchange equipment, and as an important 
laboratory reagent (often in diluted form).  
 

Concentrated solutions cause severe burns; permanent visual damage may occur. Inhalation 
causes coughing, choking; inflammation and ulceration of the respiratory tract may occur. Ingestion can 
be fatal.  

 
Zinc metal is generally obtained from ores of zinc containing sulfur. Its abundance in the earth's 

crust is about 0.02%. Zinc is a fairly reactive metal which combines readily with oxygen, sulfur and the 
halogens. Pure zinc, when exposed to air gradually becomes coated with white zinc carbonate (ZnCO3). 
Most zinc compounds are colorless in solution (or white as solids). Zinc is readily attacked by dilute 
acids, releasing hydrogen as it dissolves. It is used in corrosion protection (galvanizing) and its 
compounds are employed as paint pigments and disinfectants. 

 
Copper makes up about 0.01% of the earth's crust. It is one of the earliest known metals and is 

known for its unique reddish color when pure. However it becomes dull when exposed to air, forming 
oxides of copper, and in moist air becomes coated with green copper carbonate (this is part of the patina 
that appears on old copper or copper alloy exposed to the elements--like the Statue of Liberty). It is very 
slowly attacked by dilute hydrochloric acid and sulfuric acid, while nitric acid can readily dissolve it. It 
also slowly dissolves in aqueous ammonia. 
 

Copper is used in the manufacture of bronzes (copper + tin) and brasses (copper + zinc), and is 
used extensively in electrical conductors (wires, printed circuits, etc.). Of course copper also makes up a 
percentage of nearly all U.S. coins minted today.  
 

Copper itself probably has little or no toxicity, but some of its compounds can be quite 
hazardous. 
 
Technique Discussion 
 
 In an experiment of this type the most important consideration--after safe technique--is judicious 
sample handling to avoid loss. Careful use of the analytical balance and thorough inspection of the 
sample each time before making a measurement will pay off in more accurate results. Cooling the test 
tube to "finger comfort" is essential before massing each and every time. 
 
 
 
 
 
 
 
 
 



 About 1 gram of copper(II) bromide should be used. The 
compound can be heated safely in a test tube, the bromine and other 
noxious materials safely diverted through a bent glass delivery tube into a 
reservoir of dilute sodium hydroxide. The base slowly reacts with the 
bromine as well as any nitrogen oxides released in later parts of the 
decomposition. Whenever a heated system exhausts through a delivery 
tube into a container of liquid care must be exercised to prevent backflow 
if the temperature should drop in the system. The typical result is a steam 
explosion as cool liquid contacts the hot walls of the system. Needless to 
say, such an eventuality does not improve chances for good results--or 
survival. The end of the delivery tube should therefore be close to the 
surface of the liquid BUT NOT TOUCHING IT.  
 
 When heating a solid for decomposition as in this experiment, tilting the test tube at an angle and 
distributing the solid in a thinner layer will speed up the process. Since bromine gas and nitrogen 
dioxide gas are both heavier than air, some "driving out" of the gases will be needed, playing the burner 
flame along the test tube length, slowly moving from the bottom to the top, but carefully avoiding the 
area where the stopper is inserted. Charred rubber clinging to the top of the test tube will contribute to 
poor results. 
 
 In many cases, due to the small diameter of the delivery tube, it is nearly impossible to expel all 
of the noxious fumes from the test tube. At some point determined jointly by the student and instructor 
the test tube (still stoppered) may be moved to the fume hood where the delivery tube can be gingerly 
removed and the test tube heated open until all bromine or nitrogen dioxide gas has been expelled. 
Bromine has a tendency to condense at the terminal end of the delivery tube and before carrying a test 
tube through the lab you should inspect your setup to determine if it is safe to move. 
  
 Once the initial decomposition is complete, approximately 2 mL of concentrated nitric acid 
should be added [in the fume hood] and the delivery tube replaced in the test tube before returning to the 
workstation. Because the reaction often commences without heating it is important that everything be 
ready to go. It is a good idea to have the test tube already in the clamp with the angle adjusted properly 
so that it is only necessary to slide the clamp onto the ring stand. BE SURE the swivel on the clamp is 
tightened securely. Tipping the test tube at this point is likely to result in loss of sample since the 
contents will be liquid. 
 
 Heating a small amount of liquid in a test tube demands more care than heating a solid. Playing 
the burner flame cautiously over the liquid near the shallow leading edge will help to prevent a sudden 
bumping which could spurt some sample into the delivery tube. The object is to remove as much water 
as possible before heating the sample strongly to complete the decomposition. During this process 
vaporizing/condensing acid should dissolve any solid residue on the sides of the test tube. Complete 
venting of residual bromine/nitrogen dioxide may require a second trip to the fume hood once the 
sample has been heated to dryness. 
 
 The final step in the conversion to copper metal requires dissolution of the oxide. For this 
process the test tube can be clamped vertical and about 5 mL of 6 M HCl added. The oxide should 
dissolve readily but gentle heating may help. Again, heating solutions in test tubes is tricky. If the 
sample spurts out because it is heated too rapidly the entire experiment is ruined. After dissolution is 
complete an equal volume of distilled water can be added. 
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 Based on the starting mass of copper(II) bromide, about 0.5 g of zinc should provide an adequate 
excess to displace the aqueous copper ions from solution. Because the solution is about 3 M HCl it will 
react vigorously with the zinc to produce hydrogen gas bubbles and adding the granules too rapidly or 
all at once will probably result in sample loss. As the copper forms it has a tendency to aggregate into a 
single spongy ball which can trap unreacted zinc inside it. Periodic division of the ball with a stirring rod 
or rubber policeman can help prevent this but care should be exercised not to subdivide the sample too 
much. When all of the zinc has eventually been added the sample can be warmed gently to speed up the 
reaction of excess zinc. Boiling the sample vigorously is a mistake. It increases the risk that the newly 
formed copper will be ejected from the test tube and/or will be broken down into fine particles which 
cannot be recovered. 
 
 Recovery of the solid copper mass involves carefully decanting the liquid, adding about 10 mL 
of diluted HCl (10-fold), heating gently, and then decanting that wash. At least 4 additional washes with 
distilled water should follow. Failure to completely wash the spongy sample will result in retention of 
zinc chloride and inaccurate mass data. Over zealous manipulation of the sample will result in its 
breakup and consequent loss during decanting.  
 
 The washed copper sample (still in its test tube) can be placed in a 100 mL beaker with your 
locker number on it and dried in the oven overnight before final massing.  
 
The Report 
 
Your initial calculations should include: 
 
1. The mass of copper(II) bromide used 
 
2. The stoichiometric masses of copper(I) bromide, copper(II) oxide and copper metal 
     expected 
 
3. The mass of copper(I) bromide [relative error based on stoichiometric prediction] 
 
4. The mass of copper(II) oxide [relative error based on stoichiometric prediction] 
 
5. The mass of metallic copper [relative error based on stoichiometric prediction] 
 
6. The mass of  bromine present in copper(II) and copper(I) bromide. 
    [relative error in Br masses based on stoichiometric prediction] 
 
7. The mass of oxygen present in copper(II) oxide.  
    [relative error in oxygen mass based on stoichiometric prediction] 
 
8. The empirical formulas of all three compounds based on the data. 
 
         Your conclusion to this experiment should include a demonstration, using your data, of the law 
of multiple proportions. If your data does not illustrate the law, you should explain why, using 
appropriate error analysis. In addition, you should give literature references which support your 
formulas for the three compounds (color, for example). You should also give the balanced equations for 
each step in the conversion of copper(II) bromide to metallic copper. 
 
 


