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Human Perception

• Humans have developed highly sophisticated skills for 
sensing their environment and taking actions according to 
what they observe, e.g.,
– Recognizing a face.
– Understanding spoken words.
– Reading handwriting.
– Distinguishing fresh food from its smell.
– ...
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Human and Machine Perception
• We are often influenced by the knowledge of how patterns 

are modeled and recognized in nature when we develop 
pattern recognition algorithms.

• Research on machine perception also helps us gain deeper 
understanding and appreciation for pattern recognition 
systems in nature.

• Yet, we also apply many techniques that are purely numerical 
and do not have any correspondence in natural systems.
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Pattern Recognition (PR)

• Pattern Recognition is the study of how machines can:
– observe the environment, 
– learn to distinguish patterns of interest, 
– make sound and reasonable decisions about the categories of the 

patterns.

4Wednesday, March 16, 2011

mailto:lmartins@porto.ucp.pt
mailto:lmartins@porto.ucp.pt


2011 Luís Gustavo Martins - lmartins@porto.ucp.pt

 

Pattern Recognition (PR)
• What is a Pattern?

– is an abstraction, represented by a set of measurements 
describing a “physical” object

• Many types of patterns exist:
– visual, temporal, sonic, logical, ...

Pattern Recognition Applications

Figure 3: Fingerprint recognition.

CS 551, Spring 2011 c�2011, Selim Aksoy (Bilkent University) 8 / 40

5Wednesday, March 16, 2011

mailto:lmartins@porto.ucp.pt
mailto:lmartins@porto.ucp.pt


2011 Luís Gustavo Martins - lmartins@porto.ucp.pt

 

Pattern Recognition (PR)

• What is a Pattern Class (or category)?
– is a set of patterns sharing common attributes
– a collection of  “similar”, not necessarily identical, objects
– During recognition, given objects are assigned to a prescribed class 
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Pattern Recognition (PR)

• No single theory of Pattern Recognition can possibly 
cope with such a broad range of problems...

• However, there are several standard models, 
including:
– Statistical or fuzzy pattern recognition (see Fukunaga)
– Syntactic or structural pattern recognition (see Schalkoff)
– Knowledge-based pattern recognition (see Stefik)
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Pattern Recognition

• Two phase Process
1.Training/Learning

• Learning is hard and time consuming

• System must be exposed to several examples of each class

• Creates a “model” for each class

• Once learned, it becomes natural

2.Detecting/Classifying
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Pattern Recognition

• How can a machine learn the rule from data?
– Supervised learning: a teacher provides a category label 

or cost for each pattern in the training set.
➡Classification

– Unsupervised learning: the system forms clusters or 
natural groupings of the input patterns (based on some 
similarity criteria).

➡Clustering
• Reinforcement learning: no desired category is given but 

the teacher provides feedback to the system such as the 
decision is right or wrong.
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Pattern Recognition

• Supervised Training/Learning
– a “teacher” provides labeled training sets, used to train a classifier
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Pattern Recognition
• Unsupervised Training/Learning

– No labeled training sets are provided
– System applies a specified clustering/grouping criteria to unlabeled dataset
– Clusters/groups together “most similar” objects (according to given criteria) 

?

1

2

Clustering Criteria = some similarity measure

Unlabeled Training set
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Pattern Recognition Process

• Data acquisition and sensing:
– Measurements of physical variables.
– Important issues: bandwidth, resolution , etc.

• Pre-processing:
– Removal of noise in data.
– Isolation of patterns of interest from the background.

• Feature extraction:
– Finding a new representation in terms of features.

• Classification
– Using features and learned models to assign a pattern to a 

category.

• Post-processing
– Evaluation of confidence in decisions.

Post- processing 

Classification 

Feature Extraction 

Segmentation 

Sensing 

input 

Decision 
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Features

• Features are properties of an object:
– Ideally representative of a specific type (i.e. class) of objects
– Compact (memory efficient)
– Computationally simple (CPU efficient)
– Perceptual relevant (if trying to implement a human inspired classifier)

• => Should pave the way to a good discrimination of different 
classes of objects!
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Features
• Take a group of graphical objects

– Possible features:
• Shape
• Color
• Size
• ...

– Allows to group them into different classes:

SHAPE COLORSIZE
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Feature Vectors

• Usually a single object can be represented using 
several features, e.g.
– x1 = shape (e.g. nr of sides)
– x2 = size (e.g. some numeric value) 
– x3 = color (e.g. rgb values)
– ...
– xd = some other (numeric) feature.

• X becomes a feature vector
– x is a point in a d-dimensional feature space.
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Feature Vectors

• Example of a 2D Feature Space
– x1 = shape (e.g. nr of sides)
– x2 = size (e.g. some numeric value)

x1

x2
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The Classical Model for PR
1. A Feature Extractor extracts features from raw data (e.g. audio, image, 

weather data, etc)
2. A Classifier receives X and assigns it to one of c categories, Class 1, Class 

2, ..., Class c (i.e. labels the raw data).
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The Classical Model for PR

• Example: classify graphic objects according to 
their shape
– Feature extracted: 

• nr. of sides (x1)

– Classifier:
• 0 sides => circle
• 3 sides => triangle
• (4 sides => rectangle)

– How does the classifier know that a circle has no sides and that a triangle has 
3 sides?!

[x1]
Triangle
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A Case Study: Fish Classification

• Problem:
–sort incoming fish on a conveyor belt 

according to species
–Assume only two classes exist:

• Sea Bass and Salmon
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A Case Study: Fish Classification
• What kind of information can distinguish one species from the 

other?
– length, width, weight, number and shape of fins, tail shape, etc.

• What can cause problems during sensing?
– lighting conditions, position of fish on the conveyor belt, camera noise, etc.

• What are the steps in the process?
1.Capture image.
2.Isolate fish 
3.Take measurements 
4.Make decision

Classification 

Feature Extraction 

Pre-processing 

“Sea Bass” “Salmon” 
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A Case Study: Fish Classification
• Selecting Features

– Assume a fisherman told us that a sea bass is generally longer than a salmon.

– We can use length as a feature and decide between sea bass and salmon 
according to a threshold on length.

– How can we choose this threshold?An Example: Selecting Features

Figure 13: Histograms of the length feature for two types of fish in training

samples. How can we choose the threshold l∗ to make a reliable decision?

CS 551, Spring 2011 c�2011, Selim Aksoy (Bilkent University) 20 / 40

Histograms of the 
length feature for 
two types of fish in 
training samples. 
How can we choose 
the threshold l∗ to 
make a reliable 
decision?

Even though “sea 
bass” is longer than 
“salmon” on the 
average, there are 
many examples of 
fish where this 
observation does 
not hold...
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A Case Study: Fish Classification

• Selecting Features
– Let’s try another feature and see if we get better discrimination

➡Average Lightness of the fish scales
An Example: Selecting Features

Figure 14: Histograms of the lightness feature for two types of fish in training

samples. It looks easier to choose the threshold x∗ but we still cannot make a

perfect decision.

CS 551, Spring 2011 c�2011, Selim Aksoy (Bilkent University) 22 / 40

It looks easier to 
choose the 
threshold x∗ but 
we still cannot 
make a perfect 
decision.

Histograms of the 
lightness feature for 
two types of fish in 
training samples. 
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A Case Study: Fish Classification
• Multiple Features

– Single features might not yield the best performance.

– To improve recognition, we might have to use more than one feature at a time.

– Combinations of features might yield better performance.

– Assume we also observed that sea bass are typically wider than salmon.
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Scatter plot of 
lightness and width 
features for training 
samples. We can 
draw a decision 
boundary to divide 
the feature space 
into two regions. 
Does it look better 
than using only 
lightness?

Each fish image is 
now represented by 
a point in this 2D 
feature space
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A Case Study: Fish Classification
• Designing a Classifier

• Can we do better with another decision rule? 
• More complex models result in more complex boundaries.

An Example: Decision Boundaries

� Can we do better with another decision rule?
� More complex models result in more complex boundaries.

Figure 16: We may distinguish training samples perfectly but how can
we predict how well we can generalize to unknown samples?

CS 551, Spring 2011 c�2011, Selim Aksoy (Bilkent University) 27 / 40

We may 
distinguish 
training samples 
perfectly but how 
can we predict 
how well we can 
generalize to 
unknown 
samples?

DANGER OF 
OVER 
FITTING!!

CLASSIFIER 
WILL FAIL TO 
GENERALIZE 
TO NEW 
DATA...
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A Case Study: Fish Classification
• Designing a Classifier

• How can we manage the tradeoff between complexity of decision rules and 
their performance to unknown samples?

Different criteria 
lead to different 
decision 
boundaries

An Example: Decision Boundaries

� How can we manage the tradeoff between complexity of

decision rules and their performance to unknown samples?

Figure 17: Different criteria lead to different decision boundaries.

CS 551, Spring 2011 c�2011, Selim Aksoy (Bilkent University) 28 / 40
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Feature Extraction
• Designing a Feature Extractor

• Its design is problem specific (e.g. features to extract from graphic objects may 
be quite different from sound events...)

• The ideal feature extractor would produce the same feature vector X for all 
patterns in the same class, and different feature vectors for patterns in different 
classes.

• In practice, different inputs to the feature extractor will always produce different 
feature vectors, but we hope that the within-class variability is small relative to 
the between-class variability.

• Designing a good set of features is sometimes “more of an art than a 
science”...
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Feature Extraction

• Multiple Features
– Does adding more features always improve the results?

• No!! So we must:
– Avoid unreliable features. 

– Be careful about correlations with existing features. 

– Be careful about measurement costs. 

– Be careful about noise in the measurements.

– Is there some curse for working in very high dimensions?
• YES THERE IS! ==> CURSE OF DIMENSIONALITY

➡thumb rule: n >= d(d-1)/2 n = nr of examples in training dataset
d = nr of features
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Feature Extraction

• Problem: Inadequate Features
– features simply do not contain the information needed to separate the classes, it 

doesn't matter how much effort you put into designing the classifier.

– Solution: go back and design better features.

“Good” features “Bad” features 
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Feature Extraction

• Problem: Correlated Features
– Often happens that two features that were meant to measure different characteristics 

are influenced by some common mechanism and tend to vary together. 
• E.g. the perimeter and the maximum width of a figure will both vary with scale; larger figures will have 

both larger perimeters and larger maximum widths.

– This degrades the performance of a classifier based on Euclidean distance to a 
template. 

• A pattern at the extreme of one class can be closer to the template for another class than to its own 
template. A similar problem occurs if features are badly scaled, for example, by measuring one feature in 
microns and another in kilometers.

– Solution: (Use other metrics, e.g. Mahalanobis...) or extract features known to be uncorrelated!
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Designing a Classifier
• Model selection: 

– Domain dependence and prior information.
– Definition of design criteria. 
– Parametric vs. non-parametric models. 
– Handling of missing features. 

– Computational complexity. 
– Types of models: templates, decision-theoretic or statistical, syntactic or 

structural, neural, and hybrid. 
– How can we know how close we are to the true model underlying the patterns?
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Designing a Classifier 
• Designing a Classifier

• How can we manage the tradeoff between complexity of decision rules and 
their performance to unknown samples?

Different criteria 
lead to different 
decision 
boundaries
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Designing a Classifier 

• Problem: Curved Boundaries
– linear boundaries produced by a minimum-Euclidean-distance 

classifier may not be flexible enough. 
• For example, if x1 is the perimeter and x2 is the area of a figure, x1 will grow linearly with 

scale, while x2 will grow quadratically. This will "warp" the feature space and prevent a linear 
discriminant function from performing well.

– Solutions:

• Redesign the feature set (e.g., let x2 be the square root of the area)

• Try using Mahalanobis distance, which can produce quadratic decision boundaries

• Try using a neural network (beyond the scope of these notes; see Haykin)
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Designing a Classifier 

• Problem: Subclasses in the dataset
– frequently happens that the classes defined by the end user are 

not the "natural" classes...
– Solution: use CLUSTERING.
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Designing a Classifier 

• Problem: Complex Feature Space
– Solution: use different type of Classifier...
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Simple Classifiers

• Minimum-distance Classifiers
– based on some specified “metric” ||x-m||
– e.g. Template Matching
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Simple Classifiers

• Template Matching

– To classify one of the noisy examples, simply compare it to the two templates. This can 
be done in a couple of equivalent ways:

1. Count the number of agreements. Pick the class that has the maximum number of agreements. This is a maximum 
correlation approach.

2. Count the number of disagreements. Pick the class with the minimum number of disagreements. This is a minimum 
error approach.

• Works well when the variations within a class are due to "additive noise”, and there are no 
other distortions of the characters -- translation, rotation, shearing, warping, expansion, 
contraction or occlusion.

TEMPLATES NOISY EXAMPLES
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Simple Classifiers

• Metrics
– different ways of measuring distance:

• Euclidean metric: 
– || u || = sqrt( u12 + u22 + ... + ud2 )

• Manhattan (or taxicab) metric: 
– || u || = |u1| + |u2| + ... + |ud|

• Contours of constant...
– ... Euclidean distance are circles (or spheres)
– ... Manhattan distance are squares (or boxes)
– ... Mahalanobis distance are ellipses (or ellipsoids)
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Classifiers: Neural Networks

4.4. TRAINING FEEDFORWARDNETWORKS BY BACKPROPAGATION53

this threshold component, but we have chosen here to use the familiar X,W
notation, assuming that these vectors are “augmented” as appropriate.) We

denote the weighted sum input to the i-th threshold unit in the j-th layer by

s(j)i . (That is, s(j)i = X(j−1)•W(j)
i .) The number of TLUs in the j-th layer is

given by mj . The vector W(j)
i has components w(j)

l,i for l = 1, . . . ,m(j−1) + 1.
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Figure 4.17: A k-layer Network

4.4.2 The Backpropagation Method

A gradient descent method, similar to that used in the Widrow Hoff method,

has been proposed by various authors for training a multi-layer, feedforward

network. As before, we define an error function on the final output of the

network and we adjust each weight in the network so as to minimize the error.

If we have a desired response, di, for the i-th input vector, Xi, in the training

set, Ξ, we can compute the squared error over the entire training set to be:

ε =
�

Xi � Ξ

(di − fi)
2

where fi is the actual response of the network for input Xi. To do gradient

descent on this squared error, we adjust each weight in the network by an

amount proportional to the negative of the partial derivative of ε with respect

to that weight. Again, we use a single-pattern error function so that we can

use an incremental weight adjustment procedure. The squared error for a single

input vector, X, evoking an output of f when the desired output is d is:

http://robotics.stanford.edu/people/nilsson/MLBOOK.pdf
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Gaussian Modeling

66 CHAPTER 5. STATISTICAL LEARNING
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Decide category 1 iff:

1

(2π)n/2|Σ2|1/2
e−1/2(X−M2)

tΣ
−1

2 (X−M2)

is less than or equal to

1

(2π)n/2|Σ1|1/2
e−1/2(X−M1)

tΣ
−1

1 (X−M1)

where the category 1 patterns are distributed with mean and covariance M1

and Σ1, respectively, and the category 2 patterns are distributed with mean
and covariance M2 and Σ2.

The result of the comparison isn’t changed if we compare logarithms instead.
After some manipulation, our decision rule is then:
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where the category 1 patterns are distributed with mean and covariance M1

and Σ1, respectively, and the category 2 patterns are distributed with mean
and covariance M2 and Σ2.

The result of the comparison isn’t changed if we compare logarithms instead.
After some manipulation, our decision rule is then:

http://robotics.stanford.edu/people/nilsson/MLBOOK.pdf
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Gaussian Mixture Models

• Use multiple Gaussians to model the data5.1. USING STATISTICAL DECISION THEORY 67
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Decide category 1 iff:

(X−M1)
tΣ−1

1 (X−M1) < (X−M2)
tΣ−1

2 (X−M2) +B

where B, a constant bias term, incorporates the logarithms of the fractions
preceding the exponential, etc.

When the quadratic forms are multiplied out and represented in terms of
the components xi, the decision rule involves a quadric surface (a hyperquadric)
in n-dimensional space. The exact shape and position of this hyperquadric is
determined by the means and the covariance matrices. The surface separates
the space into two parts, one of which contains points that will be assigned to
category 1 and the other contains points that will be assigned to category 2.

It is interesting to look at a special case of this surface. If the covariance
matrices for each category are identical and diagonal, with all σii equal to each
other, then the contours of equal probability for each of the two distributions
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where B, a constant bias term, incorporates the logarithms of the fractions
preceding the exponential, etc.

When the quadratic forms are multiplied out and represented in terms of
the components xi, the decision rule involves a quadric surface (a hyperquadric)
in n-dimensional space. The exact shape and position of this hyperquadric is
determined by the means and the covariance matrices. The surface separates
the space into two parts, one of which contains points that will be assigned to
category 1 and the other contains points that will be assigned to category 2.

It is interesting to look at a special case of this surface. If the covariance
matrices for each category are identical and diagonal, with all σii equal to each
other, then the contours of equal probability for each of the two distributions
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Classifiers: kNN

• k-Nearest Neighbours 
Classifier
– Lazy Classifier

• no training is actually performed 
(hence, lazy ;-))

– An example of Instance Based 
Learning

5.3. NEAREST-NEIGHBOR METHODS 71

The distance metric used in nearest-neighbor methods (for numerical at-

tributes) can be simple Euclidean distance. That is, the distance between two

patterns (x11, x12, . . . , x1n) and (x21, x22, . . . , x2n) is

��n
j=1(x1j − x2j)

2. This

distance measure is often modified by scaling the features so that the spread of

attribute values along each dimension is approximately the same. In that case,

the distance between the two vectors would be

��n
j=1 a

2
j (x1j − x2j)

2, where

aj is the scale factor for dimension j.

An example of a nearest-neighbor decision problem is shown in Fig. 5.3. In

the figure the class of a training pattern is indicated by the number next to it.

k = 8
X (a pattern to be classified)

1

1

1 1
1

11
1

2

1

2

2
2
2

2
2 2

2

3
3

3

3

3

3
3

3
3

training patternclass of training pattern

four patterns of category 1
two patterns of category 2
two patterns of category 3

plurality are in category 1, so
decide X is in category 1

Figure 5.3: An 8-Nearest-Neighbor Decision

See [Baum, 1994] for theoretical
analysis of error rate as a function
of the number of training patterns
for the case in which points are
randomly distributed on the surface
of a unit sphere and underlying
function is linearly separable.

Nearest-neighbor methods are memory intensive because a large number of

training patterns must be stored to achieve good generalization. Since memory

cost is now reasonably low, the method and its derivatives have seen several

practical applications. (See, for example, [Moore, 1992, Moore, et al., 1994].
Also, the distance calculations required to find nearest neighbors can often be

efficiently computed by kd-tree methods [Friedman, et al., 1977].

A theorem by Cover and Hart [Cover & Hart, 1967] relates the performance

of the 1-nearest-neighbor method to the performance of a minimum-probability-

of-error classifier. As mentioned earlier, the minimum-probability-of-error clas-

sifier would assign a new patternX to that category that maximized p(i)p(X | i),
where p(i) is the a priori probability of category i, and p(X | i) is the probability
(or probability density function) of X given that X belongs to category i, for
categories i = 1, . . . , R. Suppose the probability of error in classifying patterns

of such a minimum-probability-of-error classifier is ε. The Cover-Hart theo-

rem states that under very mild conditions (having to do with the smoothness

http://robotics.stanford.edu/people/nilsson/MLBOOK.pdf

41Wednesday, March 16, 2011

mailto:lmartins@porto.ucp.pt
mailto:lmartins@porto.ucp.pt
http://robotics.stanford.edu/people/nilsson/MLBOOK.pdf
http://robotics.stanford.edu/people/nilsson/MLBOOK.pdf


2011 Luís Gustavo Martins - lmartins@porto.ucp.pt

 

Decision Trees

• Learn rules from data
• Apply each rule at each 

node
• classification is at the 

leafs of the tree

6.2. SUPERVISED LEARNING OF UNIVARIATE DECISION TREES 75
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1
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1 0

Figure 6.2: A Decision Tree Implementing a DNF Function

6.2.1 Selecting the Type of Test

As usual, we have n features or attributes. If the attributes are binary, the
tests are simply whether the attribute’s value is 0 or 1. If the attributes are
categorical, but non-binary, the tests might be formed by dividing the attribute
values into mutually exclusive and exhaustive subsets. A decision tree with such
tests is shown in Fig. 6.4. If the attributes are numeric, the tests might involve
“interval tests,” for example 7 ≤ xi ≤ 13.2.

6.2.2 Using Uncertainty Reduction to Select Tests

The main problem in learning decision trees for the binary-attribute case is
selecting the order of the tests. For categorical and numeric attributes, we
must also decide what the tests should be (besides selecting the order). Several
techniques have been tried; the most popular one is at each stage to select that
test that maximally reduces an entropy-like measure.

We show how this technique works for the simple case of tests with binary
outcomes. Extension to multiple-outcome tests is straightforward computation-
ally but gives poor results because entropy is always decreased by having more
outcomes.

The entropy or uncertainty still remaining about the class of a pattern—
knowing that it is in some set, Ξ, of patterns is defined as:

H(Ξ) = −
�

i

p(i|Ξ) log2 p(i|Ξ)
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Clustering: k-means

http://en.wikipedia.org/wiki/K-means_clustering
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Evaluating a Classifier

• Training Set
– used for training the classifier

• Testing Set
– examples not used for training
– avoids overfitting to the data
– tests generalization abilities of the trained classifiers

• Data sets are usually hard to obtain...
– Labeling examples is time and effort consuming
– Large labeled datasets usually not widely available
– Requirement of separate training and testing datasets imposes 

higher difficulties...
– Use Cross-Validation techniques!
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Evaluating a Classifier

• Confusion Matrix

http://en.wikipedia.org/wiki/Confusion_matrix
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Evaluating a Classifier

• Costs of Error 
–We should also consider costs of different errors 

we make in our decisions. For example, if the fish 
packing company knows that:
•Customers who buy salmon will object vigorously if 
they see sea bass in their cans.

•Customers who buy sea bass will not be unhappy if 
they occasionally see some expensive salmon in their 
cans.

• How does this knowledge affect our decision?
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Pattern Recognition References
• Introduction to Machine Learning - Draft of Incomplete Notes, by Nils J. Nilsson (http://

robotics.stanford.edu/people/nilsson/MLBOOK.pdf)

• Pattern Recognition general links (http://cgm.cs.mcgill.ca/~godfried/teaching/pr-web.html)
• PR for HCI - Richard O. Duda notes (http://www.cs.princeton.edu/courses/archive/fall08/

cos436/Duda/PR_home.htm)

• Talal Alsubaie PR Slides (http://www.slideshare.net/t_subaie/pattern-recognition-presentation)

• Y-H Pao, Adaptive Pattern Recognition and Neural Networks (Addison-Wesley Publishing 
Co., Reading, MA, 1989). Augments statistical procedures by including neural networks, fuzzy-
set representations and self-organizing feature maps.

• R. Schalkoff, Pattern Recognition: Statistical, Structural and Neural Approaches (John Wiley & 
Sons, New York, 1992). A clear presentation of the essential ideas in three important 
approaches to pattern recognition. 

• M. Stefik, Introduction to Knowledge Systems (Morgan Kaufmann, San Francisco, CA, 1995). 
Although this excellent book is not oriented towards pattern recognition per se, the 
methods it presents are the basis for knowledge-based pattern recognition.
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Pattern Recognition References
• P. A. Devijver and J. Kittler, Pattern Recognition: A Statistical Approach (Prentice-Hall 

International, Englewood Cliffs, NJ, 1980). A very clear presentation of the mathematical 
foundations.

• R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis (Wiley-Interscience, 
New York, 1973). Still in print after all these years.

• K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd Ed. (Academic Press, 
New York, 1990. A standard, widely-used textbook.

• D. J. Hand, Discrimination and Classification (John Wiley and Sons, Chichester, UK, 1981). 
A warmly recommended introductory book.

• S. Haykin, Neural Networks (MacMillan, NY, 1993). There are dozens of interesting 
books on neural networks. Haykin is an excellent, engineering-oriented textbook.

• T. Masters, Advanced Algorithms for Neural Networks (Wiley, NY, 1995). Well described 
by the title, with a chapter devoted to the often overlooked issue of validation.

• WEKA Data Mining Software in Java (http://www.cs.waikato.ac.nz/ml/weka/)
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