

PowerCore SDK Integration

Unity (Android/iOS) Tutorial
SDK version 1.0.2
Document Version 11.08.2016

Before You Begin

A. Software Requirements
Unity: 5.0+
Android: Android SDK 14+
iOS: iOS version 8.0+

B. Get a PowerCore Application ID
To integrate the PowerCore SDK into your application, you need to get a
PowerCore Application ID for your application - this should have been given
along with the SDK package - contact us if you have not been issued one!

C. Plan Out Your Activation Strategy
First ​, identify any PowerCore-enabled items that you want to integrate with.
This will be any toys, cards, and other merchandise that contain PowerCore
chips or QR codes. A sample code will be used later in this tutorial, but
additional sample codes for testing can be provided if needed.

Second ​, establish how you want to integrate the PowerCore experience into
your application, i.e what value you want to tie into each activation. Will each
activation introduce a character or award a rare power-up? How many times
should the application accept activations? Only once or once per day?

To get you started, a simple example of how an activation flow may go will be
provided below and we’re always free to brainstorm with you if you need
ideas.

Third ​, decide how you want to handle the PowerCore activation experience UI
wise. The PowerCore SDK offers two different modes to handle the activation
- ​Result Mode ​ and ​Code Adapter Mode ​.

Result Mode will display the default PowerCore activation screens that
make it easiest to implement and get started.
Code Adapter Mode will enable you to dictate how the activation fits with
your application’s UI as it will do the activation in the background and you
can display customized activation screens.

Lastly ​, familiarize yourself with the information that the SDK will pass back to
your application.

These will be discussed in more detail below.

Integrating the PowerCore SDK

1. Install the PowerCoreSDK
The PowerCore SDK can be installed in two ways:
1. Via a script
2. Manually.

Using the script to install the PowerCore SDK is recommended to avoid
problems with missed files or settings. The script will also automatically clear
any files or settings from old PowerCore SDK versions, and can be used to
easily update SDK files if any changes to settings such as ‘PowerCore
Application ID’ or ‘Bundle Identifier’ are made.

If in any case you are unable to use the script, the steps to manually install the
PowerCore SDK are also provided below.

Recommended Method:
Script Installation via PCOPackageManager.cs

1. Unzip the PowerCore SDK package.
2. Copy the PCOPackageManager.cs script to your project’s Assets folder.

a. The script is located inside the PowerCore SDK package at
/PowerCoreSDK_ Unity5_1.0.1/Assets/PowercoreSDK/Editor/

b. Copy the script file to your Unity project at
/<YOUR_UNITY_PROJECT_FOLDER>/Assets/PowerCoreSDK/Editor
/

c. After copying the file, a new Menu item labeled PowerCore will appear.

3. Before you run the script, a couple of settings need to be manually edited
within the script to customize it for your application:

a. POWERCORE_APPLICATION_ID: the application ID provided by

PowerCore; this will have a default value of ‘ ​7602751932 ​’, but will
need to be updated to have your application correctly work with
PowerCore codes.

b. POWERCORE_AD_APPLICATION_ID: the ad application ID provided
by PowerCore; this will have a default value of ‘​1 ​’, but will need to be
updated to have your application correctly work with the PowerCore
Ads System. If case your application does not use the PowerCore Ads
System, you need to set this value to ​NULL ​.

c. IOS_INFOPLIST_CAMERAUSAGEDESCRIPTION: the PowerCore SDK
will require the use of the phone’s camera and will be displaying this
string when asking for camera permission in iOS applications; this will
have a default value of " ​Need camera to scan PowerCore code ​".

d. ENABLE_CODE_ADAPTER_MODE: this will set whether the
PowerCore SDK should use the ​Code Adapter Mode mentioned
above and detailed below; this will have a default value of ​TRUE ​.

4. Run the script via the Unity Menu item
a. PowerCore > Install SDK…

b. Select the location of the Assets folder inside the unzipped

PowerCore SDK package

5. Verify if the script ran successfully

a. Check if there are any errors in the logfile at
‘<YOUR_UNITY_PROJECT_FOLDER>/PowerCore/SDKInstallation/<E
XECUTION_TIME>’. If there are no errors, then “Installing Succeeded!”
should be the last line of the log file.

Manual Installation

1. Unzip the PowerCore SDK package.
2. Copy the ​Plugins and ​PowerCoreSDK folders to your project’s ​Assets folder.

Both folders are located inside /PowerCoreSDK_Unity5_1.0.1/Assets/

3. Update the values for the following items in AndroidManifest.xml

i. Update the scheme for data entry with host pco.io
a. ‘ ​pco ​’ + YOUR_APPLICATION_POWERCORE_APP_ID

ii. Update ​powercoreresult and ​powercoreintent to your application’s
package name

a. powercoreresult ​.YOUR_APPLICATION_PACKAGE_NAME
b. powercoreintent ​.YOUR_APPLICATION_PACKAGE_NAME

iii. Set the value of the ‘io.powercore.sdk.Settings.CodeAdapterMode’
meta-data entry to TRUE or FALSE depending on whether your
application will be using ​Result Mode (FALSE) or ​Code Adapter Mode
(TRUE)

4. Add entries for powercore_app_id and powercore_ad_app_id in
strings.xml

a. powercore_app_id
<string name=”powercore_app_id”>
 YOUR_POWERCORE_APPLICATION_ID
</string>

b. powercore_ad_app_id - set to NULL if you are not using the
PowerCore AD platform
<string name=”powercore_app_id”>
 YOUR_POWERCORE_AD_APPLICATION_ID
</string>

2. Modify Settings For Android
The previous section will have added an ‘intent-filter’ element with an ‘action’
of ‘powercoreresult.YOUR_APPLICATION_PACKAGE_NAME’ to your main
activity declaration in ‘AndroidManifest.xml’.

You can move this ‘intent-filter’ to any activity in your application which will
handle the Code Activation intent.

The PowerCore SDK provides a subclass of ‘ ​UnityPlayerActivity ​’ named
‘SdkUnityPlayerActivity’ where you can build your code on, but in case your
application already contains a ​‘UnityPlayerActivity’ subclass, the following
helper methods should be called from that subclass’ corresponding methods.

UnityPlayerActivity PowerCore SDK helper method

onCreate SdkManagerUnity.playerActivityOnCreate(this,
savedInstanceState);

onResume SdkManagerUnity.playerActivityOnResume(this);

onNewIntent SdkManagerUnity.playerActvityOnNewIntent(this,
intent);

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ​SdkManagerUnity.playerActivityOnCreate(this,
savedInstanceState);
 ...
 }
 @Override
 protected void onResume() {
 super.onResume();

 ​SdkManagerUnity.playerActivityOnResume(this);
 ...
 }
 @Override
 protected void onNewIntent (Intent intent) {
 super.onNewIntent(intent);
 ​SdkManagerUnity.playerActivityOnNewIntent(this, intent);
 ...
 }

3. Modify Settings For iOS
The PowerCore SDK package contains two different binaries for iOS
development

1. PowercoreSdk-Release-universal - this binary supports both the
simulator and devices; ​but cannot be used to submit to the App
Store.

2. PowercoreSdk-Release-iphoneos - this binary can be used to submit
to the App Store; ​but will not run on the simulator.

To use either of the two binaries in XCode:

1. In ​Project Navigator > ​Editor > ​Targets ​, select your project and the
build target which uses the PowerCore SDK.

2. In the “ ​General ​” tab, “ ​Embedded Binaries ​” section, click the (+) sign

and choose which binary you want to use. This will add the
framework to the “ ​Linked Frameworks ​” and “ ​Libraries ​” section as well
as the content list in “ ​Project Navigator ​”.

4. Handle the PowerCore Activation Experience
The PowerCore SDK activation experience consists of two portions:
Entering ​ a code and
Displaying ​ the result for the code entered.

The PowerCore SDK currently handles code input via NFC (Android), QR Codes,
and Manual Entry. The PowerCore SDK will detect NFC codes inside any
Activity of your Android application automatically. For QR Codes and Manual
Entry in Android and iOS, you will need to call the Code Scanner manually.

 // Call PowerCore scanner
 ​PCOCodeManager.Instance.StartCodeScanner();

The above call should prompt the PowerCore scanner to display - where the
users can scan QR codes or input them manually.

To handle the result for the entered code, you can choose between two
different modes: ​Result Mode ​ and ​Code Adapter Mode ​.

If you used the PCOPackageManager.cs script, you can switch between the
two modes via the variable ​ENABLE_CODE_ADAPTER_MODE​:

 // Enable Code Adapter Mode in ​PCOPackageManager.cs
 ​public ​ ​const ​ ​bool ​ ENABLE_CODE_ADAPTER_MODE = ​true ​;

With ​Result Mode ​, your application will only need one event handler to receive
the activation result, and there will be no need to define a custom UI to be
displayed during the activation process, as the default PowerCore screens will
appear.

 // Result Mode required handlers
 if (!PCOCodeManager.Instance.IsCodeAdapterModeEnabled())
 {
 PCOCodeManager.Instance.OnSdkResultReturned +=
 OnSdkResultReturned;
 }

Below are the default PowerCore screens that will display when using ​Result
Mode ​.

With ​Code Adapter Mode ​, your application will need to define a handler for the
different phases of the activation process, as well as a custom UI to be
displayed during the activation process.

 // Code Adapter Mode required handlers
 if (PCOCodeManager.Instance.IsCodeAdapterModeEnabled())
 {

PCOCodeManager.Instance.OnCodeDetected +=
 OnCodeDetected;

PCOCodeManager.Instance.OnCodeActivationStarting +=
 OnCodeActivationStarting;

PCOCodeManager.Instance.OnCodeActivationEnded +=
 OnCodeActivationEnded;

 }

Handler Description

OnCodeDetected Triggered when an NFC is detected

OnCodeActivationStarting Triggered on QR code scan or Done is
selected in the Camera/Manual Entry screen

OnCodeActivationEnded Triggered when the verification process for
the code ends

When using the ​Code Adapter Mode ​, you can also choose to ignore NFC scans
inside the OnCodeDetected handler.

Below is a sample of how a customized UI would look when using ​Code
Adapter Mode ​.

For both ​Result ​and ​Code Adapter modes, adding the event handlers as early
as possible in your code is recommended so that your application will not miss
any codes that are scanned via the PowerCore SDK.

5. Read Activation Data
The PowerCore SDK is used to validate against the PowerCore Server whether
an activation is valid or not, and will return based on the application a set of
information on what the activation should enable.

In the diagram above, we have an application named ​AWESOME GAME and for
this application, we have allocated two different code sets - ​CODE SET A ​and
CODE SET B ​ to correspond to two different rewards.

This means that whenever a code is scanned from CODE SET A, it will return
data for AWESOME GAME, in this case Reward A with a SKU of 100COINS.
Similarly, if a code is scanned from CODE SET B, it will return data for Reward
B, which in this case has a SKU of REVIVEPOTION.

In case you have multiple applications that use the PowerCore SDK, the
PowerCore System can be set up so that the same CODE SETS activate a
different batch of rewards across your applications

In the diagram above, we now have an application named ​AWESOME GAME 2
and for this application, we are using the same code sets from ​AWESOME
GAME - ​CODE SET A and CODE SET B but attaching it to different rewards. This
time they are tied to a GEM (CODE SET A) and a CHEST (CODE SET B).

This means that whenever a code is scanned from CODE SET A, it will return
data for AWESOME GAME 2 - in this case Reward A, but this time with a SKU of
GEM. Similarly, if a code is scanned from CODE SET B, it will return data for
Reward B, which in this case has a SKU of CHEST.

Below is an example of the result string after a code from CODE SET B is
scanned inside AWESOME GAME and it is a valid activation. As mentioned
above, this result string will be available via

(a) PCOCodeResultEventArgs.Result in ​Result Mode
(b) PCOCodeAdapterEventArgs.Code.ActivationResult in ​Code Adapter

Mode

{

 ​"result"​:​"succeeded"​,
 ​"results_array"​:[

 ​{

 ​"application"​:​"Awesome Game"​,
 ​"reward"​:​"Revive Potion"​,
 ​"reward_type"​:​"Digital"​,
 ​"sku"​:​"REVIVEPOTION"​,
 ​"points"​:​0
 ​}
 ​]
}

Field Name Description

result (string) result of code validation request; this can have a value
of
(a) succeeded
(b) failed
(c) cancelled

application (string) name of application requesting the code activation

reward (string) name of reward connected to the activated code

reward_type (string) type of reward connected to the activated code; the
reward_type can be Physical or Digital

sku (string) the sku (stock keeping unit) value for the activated
code; this will be unique for each set of codes generated for
your application

points (int) number of points connected to the activated code

So in the sample result above, the PowerCore SDK has successfully activated a
code for the application named ​Awesome Game ​. This code is tied to a reward
named ​Revive Potion ​. This reward has SKU value of ​REVIVEPOTION. The
application can then use this SKU inside the game to award the user a Revive
Potion.

Next Steps - Using the PowerCore SDK
Now that you’ve integrated the PowerCore SDK into your project, you can now
start working with PowerCore codes!

The following section layouts a very simple activation flow which you can build
on. This can also be used to verify if you’ve successfully integrated the
PowerCore SDK into your application.

For this flow we will be using the ​Result Mode which will display the default
PowerCore activation screens. We will also only be using the SKU to dictate
what the application will do after successfully activating a code.

In this sample flow, our main screen will be displaying the number of times you
have activated a code, as well as contain a button to call the SDK scanner so
you can scan QR codes or enter codes manually.

The SKU value we will compare with has a value of ​SDKTEST ​. This SKU will be
unique to a specific set of codes inside the PowerCore code system, meaning
that other codes will be tied to a different SKU value.

For the button, we just need to tie it to a method which will call the
PowerCoreSDK method ​PCOCodeManager.Instance .StartCodeScanner();

A sample implementation is below - here we have ActionEventManager which
has a method named InitScan(), which we have tied to the ​Scan! ​Button.

And then inside ​InitScan() ​, we have the following code:

 ​public​ ​void​ InitScan()
 {

 ​PowercoreSDKCodeManager​.instance.StartCodeScanner();
 }

This should bring up the PowerCore code scanner on click of the button.

For the results of the scan, as we are using the ​ResultMode ​, we need to set a
delegate to handle it - in this case, we’re setting it to a method named
CheckPowerCoreResult.

PowercoreSDKCodeManager.instance.OnPowercoreResultDelegate +=
CheckPowerCoreResult;

Inside the delegate method, we can access the ​_pcoResult object detailed in
section 5 above, and we can read and check against the values in that JSON

public void CheckPowerCoreResult(string _pcoResult) {
 // parse JSON and check the value for SKU
 // you may use your preferred JSON library
 // below is just pseudo code

 if(parsedJSON.getValueFor(“SKU”) == “SDKTEST”) {
 activationCount++;
 // other specific actions for the SKU
 // introduce a new character
 // give out coins
 }

 updateUI();
}

Based on how you designed your activation rewards, you can customize what
is inside the ​CheckPowerCoreResult method to how you want to reward each
activation, may it be a new character or redeem coins inside your application.

Try this flow out!

Set the PowerCore application ID as ‘​7602751932 ​’ and then try entering the
code ​‘RXY6NA9DC4’ ​. The PowerCore SDK should return a successful result
with the SKU value being returned is ​‘SDKTEST’.

The following QR code can also be scanned and should return a successful
result with the same SKU value of ‘ ​SDKTEST ​’.

RXY6NA9DC4

The PowerCore SDK package also contains a sample project which
demonstrates the PowerCore activation process which you can base and build
on.

Troubleshooting the PowerCore SDK
If you have any questions or problems with compiling or running your project
after integrating the PowerCore SDK, please reach out to us at
support@powercore.io ​.

mailto:support@powercore.io

