Álgebra Linear - IMED

Começar. É Gratuito
ou inscrever-se com seu endereço de e-mail
Álgebra Linear - IMED por Mind Map: Álgebra Linear - IMED

1. 2 - Sistema Linear

1.1. Determinado: Condição de existência, ao resolver o sistema encontramos uma única solução, DERTERMINANTE (SPD)

1.2. Indeterminado(SPI): Ao resolver o sistema encontramos infinitas soluções, terá variável livre na resposta.

1.3. ≠

2. 1 - Determinante de ordem N

2.1. Pela definição utilizamos a 1ª linha, conceito de cofator.

2.2. Δij=(-1)i+j . |det|

2.3. Teorema de Laplace: Escolher qualquer linha ou coluna. Observe onde tem zeros e Ordem n >= 2.

2.4. Processo de triangulação: Ordem n > = 2, escalonamento parcial, transformar numa matriz triangular superior ou inferior e determinante matriz precisa ser quadrada.

2.5. Operações Elementares | Compensações 1) Li -> Lj, com i # j | Multiplica-se por (-1) 2)Li -> K.Li, com k#0 | Multip.. por (1/k) 3)Li -> Li + K.Li, i#j e k#0 | Não existe

3. 3 - Sistema linear homogêneo e classificação.

3.1. Possível determinado (SPD): uma solução - det(A) ≠ 0

3.2. Possível Indeterminado(SPI): infinitas soluções - det(A) = 0 ou det(Ax) = 0 ou det(Ay) = 0

3.3. SI: Nenhuma solução - det(A) = 0 ou det(Ax) # 0 ou det(Ay) ≠ 0

3.4. Termo independente vai ser zero (Homogêneo)

4. 4 - Resolução de sistemas

4.1. Regra de cramer: Utiliza conceitos de determinantes.

4.2. 1º Só poderá ser utilizado na resolução de sistemas que o número de equações e números de incógnitas forem iguais.

4.3. 2º Consiste num método para resolver um sistema linear normal aquele que o determinante é diferente de zero.

4.4. det(A) ≠ 0 -> Matriz dos coeficientes

4.5. Se o Δ determinante de A for ≠ 0 pode continuar.

4.6. Calcular o determinante das incógnitas