Habit Factory Data Analysis
by Su Jae Lee
1. Analysis with R
1.1. Data Processing
1.1.1. Date Merging, Split, Sorting
1.1.2. Statistics Summary
1.1.3. Data Exploratory
1.1.4. Statistics Analysis(t-test, ANOVA, F-test, Correlation
1.2. Prediction
1.2.1. Linear Regression
1.2.2. Multi-Linear Regression
1.2.3. Principle Component Regression
1.2.4. Partial Least Square Regression
1.3. Classification
1.3.1. Decision Tree
1.3.2. SVM(Support Vector Machine)
1.3.3. Ramdom Forest
1.3.4. Logistic Regression
1.4. Clustring
1.4.1. Hierarchical Clustering
1.4.1.1. Single linkage method
1.4.1.2. Complete linkage method
1.4.1.3. Average linkage method
1.4.1.4. Centroid linkage method
1.4.2. Non-hierarchical Clustering
1.4.2.1. K-mean
1.4.2.2. K-medoids
1.4.2.2.1. Partitioning Around Medoids
1.4.2.2.2. CLARA(Clustering LARge Applications)
1.5. Association
1.5.1. Association Rule Analysis