
1. REPLICATION CRISIS
1.1. ABILITY TO REPEAT THE FINDINGS OF PREVIOUS RESEARCH USING THE SAME OR SIMILAR METHODS
1.2. REASONS
1.2.1. SHEER COMPLEXITY OF HUMAN COGNITION
1.2.2. EXPERIMENTERS SOMETIMES USE QUESTIONABLE PRACTICES
1.2.2.1. P-HACKING
1.2.2.2. PROPOSING HYPOTHESIS AFTER ANAYZING THE DATA
1.3. META-ANALYSIS
1.3.1. FINDINGS FROM STUDIES ARE COMBINED AN ANALYZED USING STATISTICAL TECHNIQUES
1.3.2. PROBLEMS
1.3.2.1. APPLES AND ORANGES PROBLEM
1.3.2.2. FILE DRAWER PROBLEM
1.3.2.3. GARBAGE IN-GARBAGE OUT PROBLEM
2. COGNITIVE PSYCHOLOGY
2.1. BEHAVIOURISM
2.1.1. JOHN WATSON
2.1.1.1. COGNITIVE REVOLUTION
2.2. BOTTOM-UP PROCESSING
2.3. TOP-DOWN PROCESSING
2.4. SERIAL PROCESSING
2.5. PARALLEL PROCESSING
2.6. CASCADE PROCESSING
2.7. TASK -IMPURITY PROBLEM
2.7.1. MIYAKE
2.7.1.1. STROOP TASK
2.7.1.2. ANTI CASCADE TASK
2.7.1.3. STOP-SIGNAL TASK
2.8. STRENGTHS
2.8.1. ENGINE ROOM
2.8.2. INFLUENCE ON OTHER APPROACHES
2.8.3. INFLUENCE ON COGNITIVE TASKS
2.9. LIMITATIONS
2.9.1. ECOLOGICAL VALIDITY
2.9.2. IMPLACABLE EXPERIMENTER
2.9.3. VAGUE THEORIES
2.9.4. PROLIFERATION OF DIFFERENT THEORIES
2.9.4.1. TOOTHBRUSH PROBLEM
2.9.5. PARADIGM SPECIFICITY
2.9.6. SPEED AND ACCURACY
2.9.6.1. INDIRECT EVIDENCE OF INTERNAL PROCESSES
2.9.6.1.1. IMPURE TASKS
3. COGNITIVE NEUORPSYCHOLOGY
3.1. BRAIN-DAMAGED PATIENTS
3.1.1. LESION
3.2. COLTHEART
3.2.1. MODULARITY
3.2.1.1. DOMAIN SPECIFITY
3.2.1.2. SERIAL PROCESSING
3.2.2. ANATOMICAL MODULARITY
3.2.2.1. FINGERPRINT
3.2.2.2. DUFFAU
3.2.2.2.1. CORTICAL LEVEL
3.2.2.2.2. SUBCORTICAL LEVEL
3.2.3. UNIVERSALITY
3.2.3.1. SAME BRAIN ANATOMY
3.2.4. SUBSTRACTIVITY
3.2.5. TRANSPARENCY
3.2.5.1. PERFORMANCE OF HEALTHY INDIVIDUALS MINUS THE IMPACT OF LESION
3.2.5.2. COMPENSATORY STRATEGIES
3.3. DISSOCIATIONS
3.3.1. DOUBLE DISSOCIATION
3.3.1.1. SYNDROME
3.4. SINGLE CASE STUDEIS VS CASE SERIES
3.4.1. REPRESENTATIVE OR OUTLIER
3.5. STRENGTHS
3.5.1. DRAWS CASUAL INFERENCES BETWEEN BRAIN AREAS AND COGNITIVE PROCESSES AND BEHAVIOUR
3.5.2. CAN CHALLENGE AND FALSIFY THEORIES
3.5.3. PRODUCES SUPRISING PHENOMENA
3.5.4. COMBINED WITH COGNITIVE NEUROSCIENCE
3.6. LIMITATIONS
3.6.1. LESS EVIDENCE FOR MODULARITY AMONG HIGHER-LEVEL COGNITIVE PROCESSES
3.6.2. OTHER ASSUMPTIONS TOO EXREME
3.6.3. COMPENSATORY STRATEGIES
3.6.3.1. GENERAL PROCESSES CAN BE USED TO COMPENSATE SPECIFIC PROCESSES
3.6.4. LESIONS CAN CHANGE BRAIN ORGANISATION AND CONNECTIVITY
4. COGNITIVE NEUROSCIENCE
4.1. BRAIN AND BEHAVIOUR
4.2. ORGANISATION TERMS
4.2.1. SULCUS
4.2.2. GYRUS
4.2.3. DORSAL
4.2.4. VENTRAL
4.2.5. ROSTRAL
4.2.6. POSTERIOR
4.2.7. LATERAL
4.2.8. MEDIAL
4.3. CEREBRAL CORTEX
4.3.1. FRONTAL LOBES
4.3.2. CENTRAL SULCUS
4.3.3. PARIETAL LOBES
4.3.4. LATERAL FISSURE
4.3.5. TEMPORAL LOBES
4.3.6. PARIETO-OCCIPITAL SULCUS
4.3.7. PRE-OCCIPITAL NOTCH
4.3.8. OCCIPITAL LOBE
4.3.9. GYRI
4.4. 52 BROADMANN AREAS
4.5. BRAIN ORGANISATION
4.5.1. CONNECTOME
4.5.2. NEAR-OPTIMAL TRADE-OFF
4.5.2.1. PRINCIPLE OF EFFICENCY
4.5.2.2. PRINCIPLE OF COST-CONTROL
4.5.3. MODULES VS HUBS
4.5.4. RICH CLUB
4.5.5. GLOBAL EFFICIENCY VS NODAL EFFICIENCY
4.5.5.1. INTELLIGENCE RELATED TO NODAL EFFICENCY: ANTERIOR INSULA AND DORSAL ANTERIOR CINGULATE CORTEX
4.6. TECHNIQUES FOR STUDYING BRAIN ACTIVITY
4.6.1. SINGLE-UNIT RECORDING
4.6.1.1. MICRO-ELECTRODE
4.6.1.2. ACTIVITY IN SINGLE NEURON
4.6.1.3. VERY SENSITIVE
4.6.1.4. INVASIVE
4.6.2. EVENT-RELATED POTENTIALS (ERPS)
4.6.2.1. ELECTROENCEPHALOGRAPHY (EEG)
4.6.2.2. SAME STIMULUS REPEATEDLY
4.6.2.3. SCALP ELECTRODES
4.6.2.4. SINGLE WAVEORM
4.6.3. POSITRON EMISSION TOMOGRAPHY (PET)
4.6.3.1. RADIOACTIVE WATER
4.6.3.2. POOR TEMPORAL RESOLUTION
4.6.4. FUNCTIONAL MAGNETIC RESONANCE IMAGING (fMRI)
4.6.4.1. MRI
4.6.4.2. BOLD
4.6.4.3. VERY GOOD SPATIAL RESOLUTION
4.6.4.4. LIMITATIONS
4.6.4.4.1. RELATIVELY POOR TEMPORAL RESOLUTION
4.6.4.4.2. INDIRECT MEASURE OF UNDERLYING NEURAL ACTIVITY
4.6.4.4.3. COMPLEXITY IN DATA ANLYSIS BECAUSE OF INDIVIDUAL DIFFERENCES
4.6.4.4.4. CONSTRAINTS ON STIMULI AND RESPONSE
4.6.5. EVENT-RELATED FUNCTIONAL MAGNETIC RESONANCE IMAGING (efMRI)
4.6.6. MAGNETO-ENCEPHALOGRAPHY (MEG)
4.6.6.1. MAGNETIC FIELD
4.6.6.2. VERY GOOD RESOLUTION
4.6.6.3. EXPENSIVE
4.6.7. TRANSCRANIAL MAGNETIC STIMULATION (TMS)
4.6.7.1. A COIL
4.6.7.2. SEVERAL MAGNETIC PULSES (rTMS)
4.6.7.3. INHIBITED PROCESSING IN THE AFFECTED AREA
4.6.7.4. STRENGTHS
4.6.7.4.1. PERMITS CAUSAL INFERENCES
4.6.7.4.2. MORE FLEXIBLE THAN COGNITIVE NEUROPSCHOLOGY
4.6.7.4.3. RESEARCHER CONTROLS THE LESION AND IT IS SMALL
4.6.7.4.4. WE CAN KNOW WHEN A BRAIN AREA IS MOST ACTIVATED
4.6.7.5. LIMITATIONS
4.6.7.5.1. COMPLEX AND NOT FULLY UNDERSTOOD EFFECTS
4.6.7.5.2. DIFFICULT TO DETERMINE AFFECTED BRAIN AREAS
4.6.7.5.3. LIMITED APPLICATION AREA
4.6.7.5.4. SAFETY ISSUES
4.6.8. TRANSCRANIAL DIRECT CURRENT STIMULATION (tDCS)
4.6.8.1. WEAK ELECTRIC CURRENT
4.6.8.2. ANODAL tDCS
4.6.8.2.1. INCREASES CORTICAL EXCITABILITY
4.6.8.2.2. USED TO REDUCE ADVERSE EFFECTS OF BRAIN DAMAGE ON COGNITIVE ABILITIES
4.6.8.2.3. LONG LASTING
4.6.8.3. CATHODAL tDCS
4.6.8.3.1. DECREASES CORTICAL EXCITABILITY
4.6.8.4. NO DISCOMFORT
4.6.8.5. LIMITATIONS IN RESOLUTION
4.7. STRENGTHS
4.7.1. RESOLVED THEORETICAL CONTROVERSIES
4.7.2. RICHNESS OF NEUROIMAGING DATA ALLOWS TO CONSTRUCT THEORETICAL MODELS
4.7.3. META-ANALYSES AND BRAIN-COGNITION RELATIONSHIP
4.7.4. NEUROIMAGING DATA CAN BE RE-ANALYSED
4.7.4.1. SELF-CORRECTING
4.7.5. SHOWED THAT FUNCTIONAL SPECIALISATION IS OVERSIMPLIFIED
4.7.6. SHOWED THE IMPORTANCE OF FUNCTIONAL INTEGRATION
4.8. LIMITATIONS
4.8.1. BLOBOLAGY
4.8.1.1. OVER-INTERPRETATIONS
4.8.2. UNDUE RELIANCE ON REVERSE INFERENCE
4.8.3. RARELY USED TO TEST COGNITIVE THEORIES
4.8.4. HARD TO ESTABLISH A DIRECT CORRESPONDENCE BETWEEN PSYCHOLOGICAL PROCESSES AND BRAIN ACTIVATION
4.8.5. HARD TO REPLICATE FINDINGS
4.8.6. FALSE-POSITIVE FINDINGS ARE COMMON
4.8.7. CORRELATIONAL ASSOCIATIONS BUT IS THE BRAIN AREA NECESSARY?
4.8.8. DECREASED ACTIVITY IN DEFAULT MODE NETWORK
4.8.9. ECOLOGICAL VALIDITY AND PARADIGM SPECIFITY
4.8.10. NEUROENCHANTMENT
5. COMPUTATIONAL COGNITIVE SCIENCE
5.1. COMPUTATIONAL MODELLING
5.1.1. COGNITIVE ARCHITECTURE
5.1.1.1. CONNECTIONIST MODELS
5.1.1.1.1. NEURAL NETWORK MODELS
5.1.1.1.2. NODES
5.1.1.1.3. TRACE
5.1.1.1.4. BACK PROPAGATION
5.1.1.1.5. EVALUATION
5.1.1.2. PRODUCTION SYSTEMS
5.1.1.2.1. IF...THEN... RULES
5.1.1.2.2. A WORKING MEMORY CONTAINING INFORMATION
5.1.1.2.3. A PRODUCTION SYSTEM
5.1.1.2.4. CONFLICT-RESOLUTION SSYSTEM
5.1.1.3. ADAPTIVE CONTROL OF THOUGHT-RATIONAL (ACT-R)
5.1.1.3.1. SEVERAL MODULES
5.1.1.3.2. EACH MODULE HAS A BUFFER AND INFO FROM BUFFERS ARE INTEGRATED IN A CENTRAL PRODUCTION SYSTEM
5.1.1.3.3. INTEGRATES COMPUTATIONAL COGNITIVE SCIENCE WITH COGNITIVE NEUROSCIENCE
5.1.1.3.4. LIMITATIONS
5.1.1.4. STANDARD MODEL OF THE MIND
5.1.1.4.1. EMPHASISING COMMONALITIES AMONG MAJOR COGNITIVE ARCHITECTURES
5.1.1.4.2. COGNITIVE CYCLE
5.1.2. REQUIRES TO BE EXPLICIT ABOUT A THEORY IN A WAY THAT VERBAL THEORY DOES NOT
5.2. ARTIFICIAL INTELLIGENCE
5.3. STRENGTHS
5.3.1. PROVIDES AN OVERARCHING FRAMEWORK
5.3.2. IT HAS A BROADENING SCOPE
5.3.3. ENCOURAGES RIGOROUS THINKING BECAUSE OF REQUIRING DETAILS
5.3.4. BENEFITS FROM INCREMENTAL IMPROVEMENTS
5.4. LIMITATIONS
5.4.1. BONINI'S PARADOX
5.4.1.1. MODELS BECOME LESS UNDERSTANDABLE AS THEY BECOME MORE ACCURATE
5.4.2. MANY MODELS ARE HARD TO FALSIFY
5.4.3. SOME MODELS ARE LESS SUCCESSFUL THAN THEY APPEAR
5.4.3.1. OVERFITTING MEANS MODELS TO PERFORM WELL ON SPECIFIC DATASETS BUT FAIL TO PREDICT NEW DATA
5.4.4. MOST MODELS IGNORE MOTIVATIONAL EMOTIONAL FACTORS
5.4.5. MANY MODELS ARE HARD TO UNDERSTAND AND LACK TRANSPARENCY AND ACCESSIBILITY