The generator matrix
1 1 1 1 1 1 1 1 X X X 1
0 X^2+2 0 0 0 X^2 X^2+2 X^2 X^2+2 X^2+2 X^2+2 2
0 0 X^2+2 0 X^2 X^2 X^2 2 X^2 X^2 X^2+2 2
0 0 0 X^2+2 X^2 2 X^2+2 X^2+2 X^2 X^2+2 X^2+2 2
0 0 0 0 2 2 2 2 0 0 0 0
generates a code of length 12 over Z4[X]/(X^3+2,2X) who´s minimum homogenous weight is 8.
Homogenous weight enumerator: w(x)=1x^0+33x^8+88x^9+66x^10+168x^11+1341x^12+168x^13+60x^14+88x^15+30x^16+2x^18+3x^20
The gray image is a code over GF(2) with n=96, k=11 and d=32.
This code was found by Heurico 1.16 in 0.015 seconds.