시작하기. 무료입니다
또는 회원 가입 e메일 주소
Integers 저자: Mind Map: Integers

1. Properties of addition

1.1. Closure property

1.1.1. Any two integers a and b, the sum (a+b) is also an integer.

1.1.1.1. 5 + 4 = 9

1.2. Commutative property

1.2.1. Any two integers a and b, the sum a + b = b + a.

1.2.1.1. -10 + 2 = 2 + -10

1.3. Associative property

1.3.1. Any three integers a, b and c, (a + b) + c = a + (b + c)

1.3.1.1. (6 + 8) + 10 = 6 + (8 + 10)

1.4. Additive Identity

1.4.1. for any integer a, a + 0 = a

1.4.1.1. 5 + 0 = 5

1.5. Additive inverse

1.5.1. For any integer a, there exists an integer -a such that a + (-a) = 0

1.5.1.1. 20 + (-20) = 0

2. Properties of subtraction

2.1. Closure property

2.1.1. Any two integers a and b, the difference (a-b) is also an integer.

2.1.1.1. 5 - 4 = 1

2.2. Commutative property

2.2.1. Any two integers a and b, the difference a - b ≠ b - a.

2.2.1.1. -10 - 2 ≠ 2 - (-10)

2.3. Associative property

2.3.1. Any three integers a, b and c, (a - b) - c ≠ a - (b - c)

2.3.1.1. (6 - 8) - 10 ≠ 6 - (8 - 10)

2.4. Identity property

2.4.1. any integer a, a - 0 ≠ 0 - a

2.4.1.1. -5 - 0 = -5

3. Properties of multiplication

3.1. Closure property

3.1.1. Any two integers a and b, the product (a × b) is also an integer.

3.1.1.1. 5 × 4 = 20

3.2. Commutative property

3.2.1. Any two integers a and b, the product a × b = b × a.

3.2.1.1. -10 × 2 = 2 × -10

3.3. Associative property

3.3.1. Any three integers a, b and c, (a × b) × c = a × (b × c)

3.3.1.1. (6 × 8) × 10 = 6 × (8 + 10)

3.4. Identity property

3.4.1. any integer a, a × 1 = 1 × a = a

3.4.1.1. -10 × 1 = -10

4. Properties of Division

4.1. Closure property

4.1.1. x ÷ y ≠ Z

4.1.1.1. 5 ÷ 4 ≠ 20

4.2. Commutative property

4.2.1. x ÷ y ≠ y ÷ x

4.2.1.1. -10 ÷ 2 ≠ 2 ÷ -10

4.3. Associative property

4.3.1. (x ÷ y) ÷ z ≠ x ÷ (y ÷ z)

4.3.1.1. (6 ÷ 8) ÷ 10 ≠ 6 ÷ (8 ÷ 10)

5. Distrubutive property

5.1. Distributivity of multiplication over addition holds true for integers

5.1.1. For any integers a, b and c, a × (b + c) = (a × b) + (a × c)

5.1.1.1. 6 × (8 + 10) = (6 × 8) + (6 × 10)

5.1.1.2. Distributivity of multiplication over substraction holds true for integers

5.1.1.2.1. For any integers a, b and c, a × (b - c) = (a × b) - (a × c)

5.2. Distributivity of division over addition and substraction does not hold true for integers