Machine Learning Algorithms Grouped by Similarity

马上开始. 它是免费的哦
注册 使用您的电邮地址
Machine Learning Algorithms Grouped by Similarity 作者: Mind Map: Machine Learning Algorithms Grouped by Similarity

1. Deep Learning

1.1. Deep Boltzmann Machine (DBM)

1.2. Deep Belief Network (DBN)

1.3. Convolutional Neural Networks (CNN)

1.4. Stacked Auto Encoders

2. Ensemble

2.1. Random Forest

2.2. Gradient Boosting Machines (GBM)

2.3. Boosting

2.4. Bagging (Bootstrapped Aggregation)

2.5. AdaBoost

2.6. Blending (Stacked Generalization)

2.7. Gradient Boosting Regression Trees (GBRT)

3. Neural Network

3.1. Radial Basis Function Network (RBFN)

3.2. Perceptron

3.3. Back Propagation

3.4. Hopfield Network

4. Regularization

4.1. Ridge Regression

4.2. Least Absolution Shrinkage & Selection Operator (LASSO)

4.3. Elastic Net

4.4. Least Angle Regression (LARS)

5. Rule System

5.1. Cubist

5.2. One Rule (OneR)

5.3. Zero Rule (ZeroR)

5.4. Repeated Incremental Pruning to Produce Error Reduction (RIPPER)

6. Regression

6.1. Linear Regression

6.2. Ordinary Least Squared Regression (OLSR)

6.3. Step-wise Regression

6.4. Logistic Regression

6.5. Multivariate Adaptive Regression Splines (MARS)

6.6. Locally Estimated Scatterplot Smoothing (LOESS)

7. Instance Based

7.1. kNN

7.2. Learning Vector Quantization (LVQ)

7.3. Self Optimizing Map (SOM)

7.4. Locally Weighted Learning (LWL

8. Hierarchical Clustering

9. Bayesian

9.1. Naive Bayes

9.2. Average One Dependence Estimators (AODE)

9.3. Bayesian Belief Network (BBN)

9.4. Bayesian Network (BN)

9.5. Gaussian Naive Bayes

9.6. Multinomial Naive Bayes

10. Decision Tree

10.1. Classification & Regression Tree CART

10.2. Iterative Dichotomiser 3 (ID3)

10.3. C 4.5

10.4. C 5.0

10.5. Chi Squared Automatic Interaction Detection (CHAID)

10.6. Decision Stump

10.7. Conditional Decision Tree (CDT)

10.8. M 5

11. Dimensionality Reduction

11.1. Principal Component Analysis (PCA)

11.2. Partial Least Square Reduction (PLSR)

11.3. Sammon Mapping

11.4. Multi Dimensional Scaling (MDS)

11.5. Projection Pursuit

11.6. Principal Component Regression (PCR)

11.7. Discriminant Analysis

11.7.1. Linear

11.7.2. Regularized

11.7.3. Quadratic

11.7.4. Flexible

11.7.5. Mixture

11.7.6. Partial Least Squared

12. Clustering

12.1. k-means

12.2. k-medians

12.3. Expectation Maximization