Machine Learning
作者:Achilles Rasquinha

1. Deep Learning
1.1. Architectures
1.1.1. Convolutional Neural Networks
1.1.2. Recurrent Neural Networks
1.1.2.1. GRU
2. Types of Learning
2.1. Supervised Learning
2.1.1. Classification
2.1.1.1. based-on types
2.1.1.1.1. Binary Classification
2.1.1.1.2. Multi-Class Classification
2.1.1.2. based-on algorithms
2.1.1.2.1. Logistic Regression
2.1.1.2.2. k-Nearest Neighbours
2.1.2. Regression
2.1.2.1. Linear Regression
2.2. Semi-Supervised Learning
2.3. Unsupervised Learning
2.3.1. Clustering
2.3.1.1. K-Means
2.4. Reinforcement Learning
3. How to approach a Problem?
3.1. Define your Problem
3.1.1. Problem Statement
3.1.2. Problem Description
3.1.3. Data Set Description