Simulation with ARENA

Get Started. It's Free
or sign up with your email address
Rocket clouds
Simulation with ARENA by Mind Map: Simulation with ARENA

1. Flowchart

1.1. Describe the dynamic process

1.1.1. Create Arriving parts

1.1.2. Batch

1.1.3. Separate

1.1.4. Assign Modify attributes

1.1.5. Decide

1.1.6. Process Delay Seize delay release Delay release Seize delay

1.1.7. Part of simulation output

2. Chapter one

2.1. What is simulation?

2.1.1. Mimic the behavior Real system

2.1.2. Software Apply many fields Analysis methods

2.1.3. Cheaper experiments Improving process Measure

2.2. Modeling systems

2.2.1. Inputs Customers People in a bank Hospital Products Manufacturing industries

2.2.2. Process Machines Mechanic Electrical Operators Inspections

2.2.3. Outputs Final product Customers

2.2.4. Logical Model of a system Computer program Manipulating the program Cheap Easy Fast

2.3. Kinds simulation

2.3.1. Static vs Dynamic

2.3.2. Continuos vs Discrete

2.3.3. Deterministic vs. Stochastic

3. Chapter two

3.1. Underlying ideas

3.1.1. The system Queues Numerical aspects Base units Time persistent

3.1.2. FIFO

3.1.3. Simon language

3.2. Methods

3.2.1. Models Entities Dynamic objects Created Moving for the system Attributes Common characteristic of all entities Specific entities (Global) Variables Characteristics Unique Accessible by all entities Resources Personnel Equipment Space Queues Entity can’t move on Events Arrival Departure The end

3.2.2. Randomness in the model

3.3. Issues in simulation

3.3.1. Spreadsheets Not well suited for simulation Dynamic models

4. Chapter three

4.1. Microsoft Windows

4.1.1. Operation system application

4.2. Errors in Arena

4.2.1. Unconnected modules

4.2.2. Undefined variables, atributes,resource

4.2.3. Duplicate use of module names

4.2.4. Misspelling of names

4.3. Arena window

4.3.1. Model window

4.3.2. Project bar Reports Type of statistics Quantity How is working Hosts panels Objects Panels Moduls Data

4.4. Application

4.4.1. Input analysis Distribution of arriving parts

5. Chapter four

5.1. How to develop a modeling approach

5.1.1. Building a simulation model

5.1.2. Project

5.2. Concepts

5.2.1. To collect and analyze the data

5.3. Building the Model

5.3.1. To open a new model window

5.3.2. Two Create

5.3.3. Four process

5.3.4. Two decide

5.3.5. Three records

5.3.6. Three disposes

5.4. Running the model

5.4.1. Checking the errors (F4)

5.4.2. Use the Go button

5.5. Viewing the Results

5.5.1. Arena will ask if you want to see the results

5.5.2. Category Overview Report

5.6. Frequencies statistic

5.6.1. Graphical Schedule Editor

5.7. Animation

5.7.1. Route Logic

5.7.2. Station Module

6. Chapter five

6.1. Kinds of modeling

6.2. Programming language

6.3. Certainly not all

6.3.1. of the detailed

6.4. Example

6.4.1. Telephone call center Technical support Sales Order-status checking

6.4.2. Describes the initial system (s, S) Inventory Simulation

6.4.3. Basic modeling strategy Customer Rejections and Balking

6.4.4. Model logic Variables and Expressions Three-WayDecisions Customer Rejections and Balking Storages Terminating or Steady State

6.4.5. Animation

6.4.6. The embellished model

6.4.7. More output measures

6.4.8. More output measures An inventory system Blocks panel

7. Chapter six

7.1. Time-Persistent

7.2. Time Frame of Simulations

7.2.1. Terminating simulation

7.2.2. Steady-state simulation

7.3. Confidence Intervals for Terminating Systems

7.3.1. Statistical Analysis

7.3.2. Distribution critical value

7.4. Central limit theorem

7.5. Tools ARENA

7.5.1. Inputs

7.5.2. Process analyzer Managing the practical mechanics Evaluating the results in a statistically

7.5.3. OptQues Program model What it is you want to optimize?

8. Chapter seven

8.1. Entity dependent Sequences

8.2. General issue

8.2.1. Modeling a system Part types that follow different process Two machines in Cell 3 are not identical The nature of the ow of entities through the system

8.3. Develop an animation

8.4. CAD drawings for the layout

8.4.1. Steady-state simulations

8.5. Statistically valid conclusions

8.5.1. The Factor and Transfer Time Variables

8.6. A Small Manufacturing System

8.6.1. Design of complex models

8.7. Warm-up and Run Length

8.7.1. Batching in a Single Run

9. Chapter eight

9.1. Types of Entity Transfers

9.1.1. Transfer entities between modules Moving resources Cars Transports Buses Fixed resources Machines People Do not move

9.2. The First category

9.2.1. Number of simultaneous transfers based on the number

9.3. The Second category

9.3.1. Constrains the ability to start a transfer based on space availability

9.4. Simple route

9.4.1. Routes

9.4.2. Stations

9.4.3. Free passing

9.5. To limit

9.5.1. Only two entities At the same time

9.5.2. Resource construed method

9.6. Transporter

9.6.1. Stations

9.6.2. Leaves

9.6.3. Enters

9.7. Conveyor

9.7.1. Accumulating Different distance

9.7.2. Non accumulating Keep distance Moving constant