การหารจำนวนเต็ม

Plan your projects and define important tasks and actions

Get Started. It's Free
or sign up with your email address
การหารจำนวนเต็ม by Mind Map: การหารจำนวนเต็ม

1. ศูนย์กับการหาร

1.1. คำอธิบาย หมายถึงต้องการหาว้่า = ? ให้ = y ดังนั้น 0 = 0 y ( ตัวตั้ง = ตัวหาร ผลลัพธ์) เราต้องหาค่า y ซึ่งเมื่อคูณกับ 0 แล้วได้ ผลลัพธ์ = 0 แต่เนื่องจาก 0 คูณจำนวนเต็มใด ๆ จะเท่ากับ 0 ดังนั้นจากประโยค 0 = 0 y นี้ y จะมีค่าเป็นจำนวนใด ๆ ก็ได้

1.2. จะเห็นได้ว่า การหารด้วย 0 มีคำตอยบ 2 กรณี คือ 1. ไม่มีคำตอบเลย 2. จำนวนใดเป็นคำตอบก็ได้ ในทางคณิตศาสตร์ ไม่นิยามการหารที่มี 0 เป็นตัวหาร

2. จำนวนตรงข้ามและค่าสัมบูรณ์ของจำนวนเต็ม

2.1. จำนวนตรงข้ามของจำนวนเต็ม จำนวนที่อยู่คนละข้างของ 0(ศูนย์) และอยู่ห่างจาก 0 เป็นระยะเท่ากันเรียกว่า เป็นจำนวนตรงข้ามกัน เช่น - 4 และ 4 อยู่ห่างจาก 0 เป็นระยะ 4 หน่วยเท่ากัน เรากล่าวว่า - 3 เป็นจำนวนตรงข้ามของ 3 และ 3 เป็นจำนวนตรงข้ามของ - 3 สัญลักษณ์แสดงจำนวนตรงข้าม จำนวนตรงข้ามของ 3 เขียนแทนด้วยสัญลักษณ - 3 จำนวนตรงช้ามของ - 3 เขียนแทนด้วยสัญลักษณ - (- 3) เนื่องจาก - (- 3) หมายถึง จำนวนตรงข้ามของ - 3 แต่จำนวนตรงข้ามของ - 3 คือ 3 ดังนั้น -(- 3) = 3

3. ความหมาย

3.1. การหารจำนวนเต็มบวกกับจำนวนเต็มบวก การหารจำนวนเต็มบวกกับจำนวนเต็มบวก เช่น 8 2 หมายความว่า แบ่ง 8 ออกเป็น 2 ส่วนเท่า ๆ กัน ซึ่งจะได้ส่วนละ 4 หรือหมายความว่า 8 แบ่งออกเป็นส่วนละ 2 จะได้ 4 ส่วน

3.2. การหารจำนวนเต็มลบกับจำนวนเต็มบวก จากหลักการ = ตัวตั้ง ตัวหาร = ผลลัพธ์ เช่น 30 5 = 6 ดังนั้น 30 = 5 6 เราสมารถใช้หลัก "ตัวตั้ง = ตัวหาร ผลลัพธ์ " ไปหาผลหารของจำนวนเต็มลบกับจำนวนเต็มบวกได้

4. การหารจำนวนเต็มลบกับจำนวนเต็มลบ

4.1. การหารจำนวนเต็ม เมื่อตัวตั้งและตัวหารเป็นจำนวนเต็มลบทั้งคู่ให้นำค่าสัมบูรณ์มาหารกัน แล้วตอบเป็นจำนวนเต็มบวก เช่น

4.2. 1. จงหาค่าของ วิธีทำ เนื่องจาก ค่าสัมบูรณืของ -3 0 = 30 ค่าสัมบูรณ์ของ - 6 = 6 ดังนั้น 30 6 = 5 ตอบ 5 2. จงหาค่าของ วิธีทำ เนื่องจาก ค่าสัมบูรณ์ของ - 20 = 20 ค่าสัมบูร์ืของ - 2 = 2 ดังนั้น 20 2 = 10 ตอบ 10