1. Future Prospects
1.1. Integration with existing waste treatment systems
1.2. Genetic modification of exoelectrogens to enhance electron transfer capabilities and MFC performance
1.3. Operation in harsher environments utilizing extremophiles
1.4. Exploration of new exoelectrogens and their metabolic pathways
2. Interspecies Interactions
2.1. Direct Interspecies Electron Transfer (DIET)
2.1.1. Methods
2.1.1.1. minerals
2.1.1.2. conductive pili
2.1.1.3. cytochromes
2.2. Synergistic interactions
2.2.1. *Desulfovibrio vulgaris* and *Clostridium acetobutylicum *
2.2.2. *G. sulfurreducens* and *G. metallireducens. *
2.2.3. *S. onediensis* MR - 1 and *B. subtilis * RH33
3. Application
3.1. Waste Treatment
3.1.1. Treatment of particular industrial waste streams
3.1.2. Alternative for textile waste treatment
3.1.3. Wastewater treatment processes for removing pollutants and recovering energy
3.2. Bioremediation: removal of toxic compounds
3.3. Bioelectricity Generation
3.3.1. Powering devices
3.3.2. Energy recovery from waste
3.4. Biohydrogen Production:
4. Exoelectrogens
4.1. Factors Affecting Performance
4.1.1. Substrate availability
4.1.2. Microbial community composition
4.1.3. Temperature
4.2. Classification
4.2.1. Gram-negative bacteria
4.2.1.1. Geobacter sulfurreducens
4.2.1.2. Shewanella oneidensis
4.2.2. Gram-positive bacteria
4.2.2.1. Clostridium butyricum
4.2.2.2. Enterococcus faecalis
4.2.2.3. Bacillus spp.
4.2.2.4. Lactococcus lactis
4.2.2.5. Eubacterium
4.2.2.6. Lactobacillus rhamnosus
4.2.3. Extremophiles
4.2.3.1. Hyperthermophilic archaea
4.2.3.1.1. Pyrococcus furiosus
4.2.3.1.2. Geoglobus Ahangau
4.2.3.1.3. Ferroglobus placedus
5. Extracellular Electron Transfer (EET)
5.1. Direct electron transfer (DET)
5.1.1. conductive pili (nanowires)
5.1.2. conductive biofilms
5.1.3. cytochromes
5.2. Mediated electron transfer (MET)
5.2.1. Exogenous (added to the system)
5.2.2. Endogenous (naturally produced by the bacteria)
5.2.2.1. flavins
5.2.2.2. quinones