Energy Infrastructure
by James McFarland 06/14/2008
Energy Infrastructure
by James McFarland
1. Processes
1.1. Discovery
1.1.1. Seismic
1.1.2. Drilling
1.1.3. Insolation
1.1.4. Wind patterns
1.1.5. Waves
1.1.6. Currents
1.2. Extraction
1.2.1. Mining
1.2.2. Drilling
1.2.3. In-situ
1.2.3.1. Shale oil
1.2.3.2. Coal
1.2.3.3. Hydrates?
1.3. Conversion
1.3.1. Chemical
1.3.1.1. Gasification
1.3.1.2. Fischer-Tropsch
1.3.1.3. Combustion
1.3.2. Nuclear
1.3.3. Thermo-Mechanical
1.3.3.1. Steam to electric
1.3.3.2. Solar Thermal
1.3.3.3. Combustion Turbine
1.3.4. Electro-Chemical
1.3.4.1. Solar PV
1.3.5. Photosynthetic
1.3.5.1. Biomass
1.3.5.2. "Green Solar"
1.4. Transmission
1.4.1. Pipelines
1.4.1.1. Oil
1.4.1.2. Gas
1.4.1.3. CO2
1.4.2. Wires
1.4.2.1. Copper
1.4.2.2. Superconductors
1.4.3. Ships
1.4.3.1. Oil
1.4.3.2. LNG
1.4.3.3. Coal
1.4.3.4. CO2
1.4.4. Rail
1.4.4.1. Coal
1.5. Distribution
1.5.1. Pipelines
1.5.2. Wires
1.5.3. Trucks
1.6. Storage
1.6.1. Batteries
1.6.2. Pumped Hydro
1.6.3. Tanks
1.6.3.1. Oil
1.6.3.2. Natural Gas
1.6.4. Compressed Air
1.6.5. Underground Natural Gas
1.6.6. Flywheel
1.6.7. Capacitor
1.7. End-Use
1.7.1. Heat
1.7.1.1. Space
1.7.1.2. Industrial processing
1.7.2. Lighting
1.7.3. Transportation
1.7.4. Electronics
1.7.5. Motors
1.7.6. Other machines
1.8. Waste Management
1.8.1. Bi-products
1.8.1.1. Sulfur
1.8.1.2. Gypsum
1.8.1.3. Asphalt
1.8.2. Storage
1.8.2.1. Atmosphere
1.8.2.2. Ocean
1.8.2.2.1. Diffuse
1.8.2.2.2. CO2 lake
1.8.2.2.3. Sediment as hydrate
1.8.2.3. Underground
1.8.2.3.1. Nuclear
1.8.2.3.2. Gases esp. CO2
1.8.2.4. Biomass
1.8.2.4.1. Trees
1.8.2.4.2. Soils
1.8.3. Dilution
1.8.3.1. Atmosphere
1.8.3.1.1. Urban pollutants
1.8.3.2. Water
1.8.3.2.1. Thermal pollution
2. Capital Inputs
2.1. Physical
2.1.1. Equipment
2.1.1.1. Turbines
2.1.1.2. Solar cells
2.1.1.3. Boilers
2.1.1.4. Pipes
2.1.1.5. Motors
2.1.1.6. Pumps
2.1.1.7. Catalysts
2.1.2. Suppliers
2.1.2.1. Processes
2.1.2.1.1. Engineering
2.1.2.1.2. Procurement
2.1.2.1.3. Fabrication
2.1.2.1.4. Construction
2.1.2.2. Services
2.1.2.2.1. Demand-side management
2.1.2.2.2. Peak shaving
2.1.2.2.3. Emissions trading
2.1.2.2.4. Site development
2.1.2.2.5. Fuel price hedging
2.2. Financial
2.2.1. Angel
2.2.2. Venture Capital
2.2.3. Equity
2.2.4. Institutional
2.2.5. Banking
2.2.6. Markets
2.2.7. Brokers
2.2.8. Traders
2.2.9. Government
2.2.9.1. Taxes
2.2.9.2. Subsidies
3. Labor Inputs
3.1. Educated
3.1.1. University
3.1.2. Other
3.2. Outsourced
4. Knowledge Supply
4.1. Operations
4.1.1. Private Industry
4.1.2. Consultancies
4.2. RD&D
4.2.1. Existing Industry
4.2.2. Government
4.2.3. Universities
4.2.4. Entrepreneurs
5. Socio-Political
5.1. Political
5.1.1. Supply Security
5.1.1.1. Threats
5.1.1.1.1. Embargo
5.1.1.1.2. Instability
5.1.1.1.3. Terrorism
5.1.1.1.4. Natural disasters
5.1.1.2. Impacts
5.1.1.2.1. Economy
5.1.1.2.2. National Security
5.1.2. Regulatory
5.1.2.1. Siting
5.1.2.2. Operations
5.1.2.3. Decommissioning
5.1.2.4. Standards
5.1.3. Legislative
5.1.3.1. Property rights
5.1.3.1.1. Intellectual
5.1.3.1.2. Physical
5.1.3.2. Fiscal
5.1.3.2.1. Taxes
5.1.3.2.2. Subsidies
5.2. Social
5.2.1. NIMBY, NUMBY, BANANA
5.2.2. Attitude toward energy
5.2.2.1. Right to cheap gas
5.2.2.2. Environmental awareness
5.2.2.3. Security
5.2.2.3.1. MEOW - Moral Equivalent Of War
5.2.2.3.2. Middle East entanglements
5.2.2.4. Willingness to pay for clean energy
6. Dynamics
6.1. Drivers
6.1.1. Population
6.1.2. Economy
6.1.3. Policy
6.1.4. Technology
6.1.5. Values
6.1.6. Public opinion
6.2. Growth
6.3. Scale
6.4. Investment
6.5. Time scales
6.5.1. Historic
6.5.2. Future
7. Related Networks
7.1. Transportation
7.1.1. Rail
7.1.2. Roads & Vehicles
7.1.3. Shipping
7.1.4. Air
7.2. Telecommunications
7.3. Water resources
7.3.1. Hydropower
7.3.2. Water supply
7.3.3. Water treatment
7.4. Agriculture
8. Network Characteristics
8.1. Flows
8.1.1. $
8.1.2. EJ
8.2. Nodes
8.3. Hubs
8.4. Mean shortest path length
8.5. Clustering coefficient
8.6. Fraction of nodes with x deg. of connections
8.7. Type of network
8.7.1. Small world
8.7.2. Free scale
8.7.3. Random
9. Tools & Methods
9.1. Cost Benefit
9.2. Life-cycle analysis
9.3. Trade-off analysis
9.4. Geographical information systems
9.5. Other
9.6. Disciplinary Frames
9.6.1. Science/Engineering
9.6.2. Economics
9.6.3. Business
9.6.4. Operations research
9.6.5. Political Science
9.6.6. Sociology/Psychology
9.6.7. History
9.7. Modeling
9.7.1. Top-down
9.7.2. Bottom-up
9.7.3. Hybrid
9.7.4. Optimizing
9.7.5. Behavioral
9.7.6. Agent-based
9.7.7. Recursive
9.7.8. Forward-looking
10. Energy Inputs
10.1. Forms of energy carried
10.1.1. Electricity
10.1.2. Hydrogen
10.1.3. Hydrocarbons
10.1.3.1. Fossil
10.1.3.2. Biomass
10.1.4. Heat
10.2. Energy Sources
10.2.1. Intensive
10.2.1.1. Fossil
10.2.1.1.1. Coal
10.2.1.1.2. Oil
10.2.1.1.3. Gas
10.2.1.1.4. Tar sands
10.2.1.1.5. Oil shales
10.2.1.2. Nuclear
10.2.1.2.1. Fission
10.2.1.2.2. Fusion
10.2.1.3. Geothermal
10.2.2. Extensive
10.2.2.1. Hydro
10.2.2.2. Wave
10.2.2.3. Tidal
10.2.2.4. Wind
10.2.2.5. Solar
10.2.2.6. Biomass
10.2.3. Characteristics
10.2.3.1. Spatial distribution
10.2.3.2. Cost of extraction
10.2.3.3. Quantity
10.2.3.3.1. Resources
10.2.3.3.2. Reserves
10.2.3.4. Quality
10.2.3.4.1. Energy density
10.2.3.4.2. Purity
10.2.3.4.3. Intensity