Unlock the full potential of your projects.
Try MeisterTask for free.
Vous n'avez pas de compte ?
Inscription gratuite
Parcourir
Cartes en vedette
Catégories
Gestion de projet
Objectifs d'affaires
Ressources humaines
Brainstorming et analyse
Marketing et contenu
Éducation et remarques
Loisirs
Vie courante
Technologie
Design
Résumés
Autre
Langues
English
Deutsch
Français
Español
Português
Nederlands
Dansk
Русский
日本語
Italiano
简体中文
한국어
Autre
Montrer carte totale
Copier éditer carte
Copier
Chapter 3 Linear Systems
Objectifs d'affaires
TC
Troy Cole
Suivre
Lancez-Vous.
C'est gratuit
S'inscrire avec Google
ou
s'inscrire
avec votre adresse e-mail
Cartes mentales similaires
Plan de carte mentale
Chapter 3 Linear Systems
par
Troy Cole
1. Chapter 3.2
2. Solving systems Algebraically
3. Equivalent systems: systems that have the same solution.
4. Chapter 3.3
5. Systems of Inequalities
6. Ex. x - 2y < 6 y< -3/2x + 5
7. Chapter 3.4
8. Linear Programming
9. Linear Programming: identifies the minimum and maximum.
10. Objective Function: is how the minimum is modeled.
11. Constraints: are the limits on the variables.
12. Feasible Region: is the area on a graph that satisfies all the constraints.
13. Chapter 3.5
14. Graphs in Three Dimension
15. Coordinate Space: is adding a third axis, "z".
16. Ordered Triplets: (X,Y,Z)
17. Trace: when the graph of a pkane intersects one of the coordinate planes in a line.
18. Chapter 3.6
19. Systems with Three Variables
20. Paired for elimination x - 3y + 3z = -4 2x + 3y - z = 15 --------------------- 3x + 2z = 11
21. Solve for "x" 3x + 2z = 11 6x - 2z = 34 ----------------- 9x =45 x=5
22. Graphing Systems of Equations
23. Chapter 3.1
24. System of equations: a set of two or more equations that use the same variables.
25. Linear System: a line that contains two identicle variables.
26. Independent system: has a unique solution.
27. Dependnt system: does not have a unique solution.
28. Ex. y= x + 3 y= -2x + 3
29. Inconsistant system: a system that does not have a solution.
30. Subsitution Ex. 4x + 3y = 4 2x - y = 7
31. Solve for "y" 2x - y = 7 y= 22 -7
32. Subsitute the "y" 4x + 3y =4 4x + 3(2x - 7) =4 4x + 6x - 21 =4 4x + 6x =25 x=2.5.
33. Solve for "y" again y= 2x - 7 y= 2(2.5) - 7 y= -2
34. Final Answer (2.5, -2)
35. Three Systems x - 3y + 3z = -4 2x + 3y - z = 15 4x - 3y - z = 19
36. and....
37. Paired for elimination 2x + 3y - z = 15 4x - 3y - z = 19 ---------------------- 6x - 2z = 34
38. Solve for "z" 3x + 2z =11 3(5) + 2z = 11 ------------------- 2z = -4 z=-2
39. Solve by subsitution x - 3y + 3z = -4 5 - 3y + 3(-2) = -4 5 - 3y - 6 = -4 -3y = -3 y=1
40. Final answer (5,1,-2)
Lancez-vous. C'est gratuit!
Connectez-vous avec Google
ou
S'inscrire