Respiratory Physiology

Começar. É Gratuito
ou inscrever-se com seu endereço de e-mail
Respiratory Physiology por Mind Map: Respiratory Physiology

1. VI. Respiratory Insufficiency: Pathophysiology, Diagnosis, and Therapy

1.1. A. Diagnostic Methods

1.1.1. Maximum Expiratory Flow

1.1.2. Blood Gases and pH

1.1.3. Forced Expiratory Volume in 1 Second (FEV1) / Forced Vital Capacity (FVC) Ratio (FEV1/FVC%)

1.2. B. Specific Pulmonary Abnormalities

1.2.1. Atelectasis (Lung Collapse)

1.2.2. Chronic Pulmonary Emphysema

1.2.3. Pneumonia

1.2.4. Asthma

1.3. C. Hypoxia and Oxygen Therapy

1.3.1. Classification of Hypoxia

1.3.1.1. b. Hypoventilation Hypoxia

1.3.1.2. a. Atmospheric Hypoxia

1.3.1.3. c. Ventilation-Perfusion Abnormality/Diffusion Impairment Hypoxia

1.3.1.4. d. Ischemic/Stagnant Hypoxia

1.3.1.5. e. Anemic Hypoxia

1.3.1.6. f. Histotoxic Hypoxia

1.3.1.7. Effects of Hypoxia

1.4. Oxygen Therapy

1.5. D. Dyspnea ("Air Hunger")

1.5.1. Causes

1.5.2. Neurogenic/Emotional Dyspnea

1.6. E. Artificial Respiration

2. I. Pulmonary Ventilation: Mechanics and Volumes

2.1. Mechanics of Pulmonary Ventilation

2.1.1. Diaphragm

2.1.2. Muscles Causing Lung Expansion and Contraction

2.1.3. Intercostal Muscles

2.2. Pressures Governing Airflow

2.2.1. Transpulmonary Pressure

2.2.2. Pleural Pressure

2.2.3. Alveolar Pressure

2.3. Compliance of the Lungs

2.3.1. Elastic Forces of the Lungs

2.3.1.1. Surface Tension Elastic Forces

2.3.1.2. Tissue Elastic Forces

2.4. Dead Space

2.4.1. Anatomical Dead Space

2.4.2. Physiological Dead Space

2.5. Surfactant

2.5.1. Composition

2.5.2. Secretion

2.5.3. Clinical Significance

2.6. Work of Breathing

2.6.1. Compliance Work (Elastic Work)

2.6.2. Tissue Resistance Work

2.6.3. Airway Resistance Work

2.7. Pulmonary Volumes and Capacities (Spirometry)

2.7.1. Pulmonary Volumes

2.7.1.1. Inspiratory Reserve Volume (IRV)

2.7.1.2. Tidal Volume (VT)

2.7.1.3. Expiratory Reserve Volume (ERV)

2.7.1.4. Residual Volume (RV)

2.8. Pulmonary Capacities

2.8.1. Inspiratory Capacity (IC)

2.8.2. Functional Residual Capacity (FRC)

2.8.3. Vital Capacity (VC)

2.8.4. Total Lung Capacity (TLC)

2.9. Alveolar Ventilation

2.10. Functions of Respiratory Passageways

2.10.1. Structure and Patency

2.10.2. Mucociliary Escalator

2.10.3. Air Conditioning by the Nose

2.10.3.1. a. Warming

2.10.3.2. b. Humidifying

2.10.3.3. c. Filtering

2.11. Vocalization (Speech)

2.11.1. Phonation

2.11.2. Articulation and Resonance

3. V. Regulation of Respiration

3.1. Respiratory Center

3.2. Dorsal Respiratory Group (Inspiration)

3.3. Pneumotaxic Center (Rate and Depth Control)

3.4. Ventral Respiratory Group (Inspiration and Expiration)

3.5. Lung Inflation Signals (Hering-Breuer Inflation Reflex)

3.6. Chemical Control of Respiration

3.7. Direct Control by CO2 and H+ (Chemosensitive Area)

3.7.1. a. Chemosensitive Area

3.7.2. b. CO2's Potent Effect

3.8. Indirect Control by O2 (Peripheral Chemoreceptors)

3.8.1. a. Peripheral Chemoreceptor System

3.8.2. b. Afferent Pathways

3.8.3. c. Mechanism of O2 Sensitivity

3.8.4. d. Response to CO2/H+

3.8.5. D. Other Influences on Respiration

3.9. Exercise

3.10. Periodic Breathing (Cheyne-Stokes Breathing)

3.11. Sleep Apnea

4. VII. Environmental/Extreme Physiology: Hyperbaric Conditions

4.1. A. Effect of High Partial Pressures of Individual Gases

4.1.1. Oxygen Toxicity

4.1.2. Nitrogen Narcosis

4.1.3. a. Effect on Blood O2 Transport

4.1.4. b. Effects on CNS

4.1.5. c. Pulmonary Effects

4.1.6. Carbon Dioxide Toxicity

5. III. Gas Exchange: Diffusion of Oxygen and Carbon Dioxide

5.1. A. Physics of Gas diffusion

5.1.1. Henry's Law

5.1.2. Partial Pressure

5.1.3. Factors affecting diffusing rate in fluids

5.1.4. Diffusion Coefficient

5.2. B. Alveolar Gas Concentrations

5.2.1. Relationship with Ventilation

5.2.2. Expired Air Composition

5.3. C. Respiratory Membrane

5.3.1. Respiratory unit (Lobule)

5.3.2. Capillary Network

5.3.3. Layers of the Respiratory Membrane

5.3.4. Diffusing Capacity of the Respiratory Membrane

5.4. D. Ventilation-Perfusion Ratio (V̇A/Q̇)

5.4.1. Imbalance

5.4.2. Physiological Shunt

5.4.3. Physiological Dead Space

5.4.4. Normal Lung Variability

6. II. Pulmonary Circulation: Pressures and Fluid Dynamics

6.1. Blood Flow Distribution (Hydrostatic Gradients and Zones)

6.1.1. Regional Blood Flow

6.1.2. Zones of Pulmonary Blood Flow (West Zones)

6.1.2.1. c. Zone 3

6.1.2.2. a. Zone 1

6.1.2.3. b. Zone 2

6.2. A. Physiologic Anatomy

6.3. B. Pulmonary Pressures

6.3.1. Left Atrial and Pulmonary Venous Pressures

6.3.2. Pulmonary Artery Pressure

6.3.3. Pulmonary Capillary Pressure

6.4. Capillary Fluid Exchange and Pulmonary Edema

6.5. Forces Determining Fluid Movement (Starling Forces)

6.5.1. Outward Forces

6.5.2. Inward Force

6.5.3. Net Filtration Pressure (NFP)

6.6. Safety Factor Against Pulmonary Edema

6.7. Pleural Fluid and Pleural Effusion

7. IV. Gas Transport in Blood and Tissue Fluids

7.1. A. Oxygen Transport

7.2. O2 Diffusion in Pulmonary Capillaries

7.3. Arterial Blood O2

7.4. O2 Diffusion in Peripheral Tissues

7.5. Hemoglobin and O2-Hemoglobin Dissociation Curve

7.5.1. a. Role of Hemoglobin

7.5.2. b. Dissociation Curve

7.5.3. c. Factors Shifting the Curve (Bohr Effect)

7.6. Oxygen Usage by Cells

7.7. Carbon Monoxide (CO) Poisoning

7.8. Carbon Dioxide Transport

7.9. Pressure Gradients

7.10. Forms of Transport

7.11. CO2 Dissociation Curve

7.12. Haldane Effect

7.13. Role in pH Regulation