خصائص الأشكال الرباعية:

Get Started. It's Free
or sign up with your email address
خصائص الأشكال الرباعية: by Mind Map: خصائص الأشكال الرباعية:

1. المستطيل

1.1. تعريفه

1.2. يُعرف المستطيل: بأنه من أحد أهم الأشكال الهندسية ذات الاستخدامات الواسهة المهمة، والذي يحتوي على أربعة أضلاع، وأربعة زوايا وكل زاوية فيه تساوي 90 درجة، فمحصلة مجموع قياسات زواياه تساوي 360 درجة

1.2.1. خصائصه

1.2.2. يتكون من أربعة أضلاع، كل ضلعين فيه متقابلين متساويين ومتوازيين. قطراه متساويان وينصف كل منهما الآخر. فيه أربعة زوايا متساوية و قوائم ( كل زاوية من زواياه تساوي 90 درجة). هو شكل من الأشكال الهندسية، ويعتبر شكل ثنائي الأبعاد ( الطول والعرض ).

2. المربع

2.1. تعريفه

2.2. هو شكل رباعى جميع أضلاعه متساوية فى الطول.

2.2.1. خصائصه

2.2.2. جميع أضلاعه متساوية فى الطول. له 4 أضلاع و4 زوايا و4 رءوس . كل زاوية من زواياه الأربعة قائمه = 90 درجة قطرى المربع : متساويان فى الطول ومتعامدان وينصف كل منهما الآخر.

3. المعين

3.1. تعريفه

3.2. هو متوازي اضلاع فيه ضلعان متجاوران متساويان وهذا يعني ان جميع اضلاعه متساوية.

3.2.1. خصائصه

3.2.2. جميع اضلاعه متساوية. كل زاويتين متقابلتين متساويتين. قطرا المعين متعامدان وينصف كل منهما الاخر. قطرا المعين ينصفان زواياه.

4. شبه المنحرف

4.1. تعريفه

4.2. شبه المنحرف هو شكل رباعي يتواجد به زوج من الأضلاع المتوازية فشبه المنحرف هو سطح أو شكل مستوي ومغلق أي له شكل داخلي وخارجي وأيضًا مضلع أي له جوانب مستقيمة وبالطبع له أربعة أضلاع أو أربعة جوانب مستقيمة كمثال لشبه المنحرف

4.2.1. خصائصه

4.2.2. لمعرفة إذا كان الشكل الرباعي شبه منحرف أم لا يجب أن يتواجد به زوج واحد من الأضلاع المتوازية فإذا تواجد فهو شبه منحرف ونلاحظ أن متوازي الأطلاع جميع أضلاعة متوازية وشبه المنحرف زوج واحد منهم فقط المتوازيان وبعض العلماء يعتقدون أن متوازي الأضلاع نوع من شبه المنحرف ولكن المعظم يستبعدون ذلك فالقواعد متوازية في شبه المنحرف

4.2.3. ومن خصائص شبه المنحرف الأخرى أن أي زاويتين متجاورتين وداخليتين به سوف تكونان مكتملتين أي إضافة إلى 180 درجة أي كل زاوية قاعدة سفلية مكملة لزاوية القاعدة العلوية على نفس الجانب

4.2.3.1. انواعه

4.2.3.1.1. شبه المحرف متطابق الساقين

4.2.3.1.2. تعريفه

4.2.3.1.3. هو شبه منحرف فيه الضلعان الغير متوازيان متساويان في الطول. أو هو رباعي أضلاع يقطع فيه محزر التناظر ضلعين متقابلين مما يجعله شبه منحرف.

4.2.3.1.4. خصائصه

4.2.3.2. شبه منحرف عام وهو عبارة عن ضلعان متساويان لمضلع رباعي ولكن غير متساويان بالقطر ويتقابلان في نقطة ما. شبه منحرف مختلف الأضلاع وهو عبارة عن أربع أضلاع إثنان متوازيان غير متساويان. شبه منحرف قائم الزاوية وهو عبارة عن زاويتين قائمتين يكون الإرتفاع فيه يمثل الضلع العمودي على القاعدة الكبرى. شبه منحرف متساوي الساقين، هو عبارة عن ضلعان متقابلان ومتوازيان، والضلعين الآخرين متقابلين ومتساويين في الطول ولكن غير متوازيان.

5. متوازي الاضلاع

5.1. تعريفه

5.2. هو شكل رباعي الأضلاع فيه كل ضلعين متقابلين متوازيان. حيث يكون فيه كل ضلعين متوازيين متساويين بالطول وكل زاويتين متقابلتين متساويتين، وقطراه ينصفان بعضهما.ومجموع زواياه °360

5.2.1. خصائصه

5.2.2. 1-كل زاويتين متقابلتين متساويتان. 2-كل زاويتين متحالفتين (تقعان على ضلع واحد) متكاملتان أي مجموعها 180 درجة. 3-إذا كانت إحدى زواياه قائمة، فإن جميع زواياه قوائم كذلك، ويكون في هذه الحالة مستطيلاً، أو مربعاً وهي حالات خاصة من متوازي الأضلاع. 4-يتميز متوازي الأضلاع باحتوائه على قطرين، وهي عبارة عن الخطوط المستقيمة التي يمكن رسمها بين أحد رؤوس متوازي الأضلاع، والرأس المقابل له، “ويتميز القطران بالخصائص الآتية: كل قطر ينصّف القطر الآخر. كل قطر يقسم متوازي الأضلاع إلى مثلثين متطابقين.

6. الطائرة الورقية

6.1. تعريفه

6.2. شكل الطائرة الورقية هو شكل ثنائي الأبعاد، رباعي الأضلاع، يتكون من زوجين متمايزين من الأضلاع المتجاورة المتطابقة. وعلى عكس متوازي الأضلاع، كل ضلعين متقابلين في شكل الطائرة الورقية ليسا متطابقين ولا متوازيين.

6.2.1. خصائصه

6.2.2. قطرا شكل الطائرة الورقية متعامدان. · يوجد في شكل الطائرة الورقية زوج واحد فقط من الزوايا المتقابلة المتطابقة، هما الزاويتان المحصورتان بين كل ضلعين متجاورين غير متطابقين.