Business Intelligence

Get Started. It's Free
or sign up with your email address
Business Intelligence by Mind Map: Business Intelligence

1. Features

1.1. Self-serve reporting

1.2. Fast implementation

1.3. In-memory analysis

1.4. Data warehouse

1.5. Data visualisation

1.6. OLAP

1.7. Report scheduling

1.8. Advanced security

1.9. Mobile Access

1.10. Office integration

2. Key stages of BI

2.1. Data Sourcing

2.2. Data Preprocessing/Integration, Data warehouses

2.3. Data Exploration

2.4. Data Presentation

2.5. Decision making

3. Data Mining

4. Association

5. Clustering

6. Summarization

7. DM types of data

8. Relational Database

9. Spatial Database

10. Text Multimedia Database

11. Data Stream

12. Heterogeneous

13. Techniques

14. Machine Learning and artificial intelligence

15. Data cleaning and preparation

16. Tracking patterns

17. Association

18. Classification

19. Outlier detection

20. Clustering

21. Regression

22. Prediction

23. Sequential patterns

24. Decision trees

25. Visualization

26. Neural networks

27. Data warehouse

28. Long-term memory processing

29. Paradigms

30. Verification

31. Discovery

32. Description

33. Prediction

34. Classification

35. Regression

36. Neural Networks

37. Bayesian networks

38. Decision trees

39. Support vector machines

40. Instance Based

41. Classifier Accuracy Measures

42. Holdout Method

43. Random Subsampling

44. K-fold Cross-Validation

45. Bootstrap Methods

46. Methods

47. Classification by Back Propagation

48. Association Rule mining

49. Discriminant Analysis Method

50. Algotithms

51. Simple Linear regression

52. Lasso regression

53. logistic regression

54. Multivariate regression algorithm

55. Multiple regression algorithm

56. Tools and appliications

57. Xplenty

58. Rapid Miner

59. Orange

60. Weka

61. KNIME

62. Sisense

63. SSDT (SQL Server Data Tools)

64. Apache Mahout

65. Oracle Data Mining

66. Rattle

67. DataMelt

68. IBM Cognos

69. IBM SPSS Modeler

70. SAS Data Mining

71. Teradata

72. Board

73. Dundas BI

74. Applications

74.1. Market Analysis

74.2. Production Control

74.3. Customer Retention

74.4. Science Exploration

74.5. Fraud Detection

74.6. Sports

74.7. Astrology

74.8. Internet Web Surf-Aid

75. Sequence discovery

76. Characteristics

76.1. Prediction of likely outcomes

76.2. Focus on large datasets and database

76.3. Automatic pattern predictions based on behavior analysis

76.4. Calculation – To calculate a feature from other features, any SQL expression can be calculated.

77. Future trends

77.1. Online

77.2. Anywhere, anytime

77.3. Real-time

77.4. Centralized, formalized

77.5. RFID

77.6. More samantic capabilities

78. Analytical tools

78.1. relationships

78.1.1. Attribute

78.1.2. Hierarchy

78.1.3. DataStore

78.1.4. Exit

78.2. patterns

78.2.1. Information Consumer Pattern

78.2.2. Analysis Pattern

79. Components

79.1. Multidimensional aggregation and allocation

79.2. Denormalization, tagging and standardization

79.3. Realtime reporting with analytical alert

79.4. A method of interfacing with unstructured data sources

79.5. Group consolidation, budgeting and rolling forecasts

79.6. Statistical inference and probabilistic simulation

79.7. Key performance indicators optimization

79.8. Version control and process management

79.9. Open item management

80. benefits

81. Data warehouse

82. Understanding of business

83. Aid Decision Making

84. Used to formulate strategies

85. Improve revenue

86. Higher Market Share

87. Key performance index

88. Data source

89. ETL

90. Meta data

91. Data mart

92. Extract

93. Transform

94. Load

95. Time-series analysis

96. KDD

97. Data cleaning

98. Data integration

99. Data selection

100. Data Transformation

101. Data mining

102. Pattern evaluation

103. Knowledge representation

104. Architecture

105. Types

106. Properties

107. Single-Tier

108. Two-Tier

109. Three-Tier

110. Separation

111. Scalability

112. Extensibility

113. Securtiy

114. Administrability

115. Application

116. SAP Hana

117. Oracle Exadata

118. IBM Netezza

119. Approaches

120. Bill Inmon – Top-down Data Warehouse Design Approach

121. Ralph Kimball – Bottom-up Data Warehouse Design Approach

122. Schema

123. Star Schema

124. Snowflake Schema

125. Galaxy Schema

126. Need for data warehouse Modeling

127. Business requirement collection

128. Improving the performance of database

129. Provides Documentation of The Source and Target System

130. Ridge Regression

131. Random Forest Regression