Group Theory

Anyone wants to prepare or study Group Theory, it will be useful!

Get Started. It's Free
or sign up with your email address
Group Theory by Mind Map: Group Theory

1. f:G->G'

1.1. Homomorphism

1.1.1. Monomorphism

1.1.2. Epimorphism

1.2. Isomorphism

2. Permutation

2.1. Symmetric Group Sn

2.1.1. Alternating Group An

3. Dihedral Group Dn

3.1. Reflections

3.2. Rotations

4. Cyclic Group

4.1. Infinite

4.1.1. (Zn,+)

4.2. Finite

4.2.1. Z/pZ where p is prime, Zm * Zn, where GCD(m,n) =1

4.3. Infinite/Finite

5. f:G->G

5.1. Endomorphism

5.1.1. Automorphism

6. Centralizer (Normalizer) C(a)/N(a)

7. Conjugate Element

7.1. Conjugate Class

7.1.1. Self Conjugate

8. Centre of G (Z(G))

9. Binary Operation

10. Group

10.1. Subgroup H

10.1.1. Normal Subgroup N

10.1.1.1. Proper

10.1.1.2. Improper

10.1.1.2.1. Simple Group

11. Non Abelian Group

11.1. Hamiltonian Group

11.1.1. Quaternion Group

11.1.1.1. self conjugate elements are 1,-1. All other conjugate classes (3) have 2 elements in each class

12. Monoid

13. Semi Group

14. Cosets

15. Class Equation

16. Quotient Group G/N

17. Index of Subgroup [G:H]

18. Formula to find cl. eq. for Non-Abelian Groups

18.1. When Group order is P^n |Z(G)| = P, number of conjugacy classes = P^2+P-1 Class Eq = (1+...+1) + (P+...+P)

18.2. When Group order is 2P Class Eq = (1+P)+(2+...+2) When Group order is 2P^n Class Eq = (1+P^n)+(2+...+2)

19. Examples

19.1. Upto order 5, all groups are Abelian, hence class equation is 1+..+1 (n times)

19.2. Order 6, we have 2 groups - Z6 and S3. Z6 - 1+...+1 (n times) S3 - 1+2+3

19.3. Order 7, we have Z7 Abelian and hence 1+...+1 (7 times)

19.4. Order 8, we have groups Z8, Z2*Z4, Z2*Z2*Z2,D4,Q8 Except Q8, all are abelian, hence follow 1+...+1(n times) Q8 - 1+1+2+2+2

19.5. Order 9, we have Z9 and Z3*Z3, Abelian 1+...+1(n times)

19.6. Order 10, we have Z10 and D5 Z10 - 1+...+1 (10 times) D5 - 1+2+2+5

20. Non-Cyclic Group

20.1. Klein Four Group

20.1.1. Every proper subgroup is cyclic

21. P^2-1 times

22. (p-1)/2 times

23. (p-1)/2 times

24. P times

25. Group of Matrices

25.1. GLn(R)

25.1.1. SLn(R)

26. Abelian Group

26.1. Simple Abelian Group

26.1.1. Zp where p is prime

27. Examples

27.1. S3, S4, Dihedral groups D2n, All Abelian Groups

28. Theorems

28.1. 1. If G is solvable then every subgroup of G and every quotient group of G are solvable. 2. If G is a Group and N is Normal in G then G is solvable iff N and G/N are solvable

29. Solvable Groups

29.1. Every group of order < 60 is solvable

30. P-Group