PROBABILIDADES

Comienza Ya. Es Gratis
ó regístrate con tu dirección de correo electrónico
Rocket clouds
PROBABILIDADES por Mind Map: PROBABILIDADES

1. La probabilidad refleja las expectativas de que un suceso determinado ocurra.

1.1. otros conceptos

1.1.1. Fenómeno determinista: Se conoce con certeza el resultado del experimento

1.1.1.1. Fenómeno aleatorio: No se puede predecir el resultado del experimento

1.1.2. Suceso elemental: Cada uno de los posibles resultados, que no se pueden descomponer en otros más simples, de un experimento aleatorio

1.1.3. Espacio muestral, E: Conjunto de los sucesos elementales

1.1.4. Suceso: Subconjunto del espacio muestral

1.1.4.1. Suceso seguro: Es el suceso formado por todos los sucesos elementales

1.1.4.1.1. Suceso imposible, : Es el suceso que no contiene ningún suceso elemental

2. La probabilidad de un suceso es un número comprendido entre 0 y 1

2.1. iconclusiones

2.1.1. Se puede decir que no existe una cosa llamada probabilidad. También se puede decir que la probabilidad es la medida de nuestro grado de incertidumbre, o esto es, el grado de nuestra ignorancia dada una situación. Por consiguiente, puede haber una probabilidad de 1 entre 52 de que la primera carta en un baraja sea la J de diamantes. Sin embargo, si uno mira la primera carta y la reemplaza, entonces la probabilidad es o bien 100% ó 0%, y la elección correcta puede ser hecha con precisión por el que ve la carta. La física moderna proporciona ejemplos importantes de situaciones deterministas donde sólo la descripción probabilística es factible debido a información incompleta y la complejidad de un sistema así como ejemplos de fenómenos realmente aleatorios.

3. Una forma tradicional de estimar algunas probabilidades sería obtener la frecuencia de un acontecimiento determinado mediante la realización de experimentos aleatorios, de los que se conocen todos los resultados posibles, bajo condiciones suficientemente estables. Un suceso puede ser improbable (con probabilidad cercana a cero), probable (probabilidad intermedia) o seguro (con probabilidad uno).

3.1. La teoría de la probabilidad se usa extensamente en áreas como la estadística, la física, la matemática, las ciencias, la administración, contaduría, economía y la filosofía para sacar conclusiones sobre la probabilidad discreta de sucesos potenciales y la mecánica subyacente discreta de sistemas complejos, por lo tanto es la rama de las matemáticas que estudia, mide o determina los experimentos o fenómenos aleatorios.

4. Historia

4.1. a definición de probabilidad se produjo debido al deseo del ser humano por conocer con certeza los eventos que sucederán en el futuro, por eso a través de la historia se han desarrollado diferentes enfoques para tener un concepto de la probabilidad y determinar sus valores.

4.2. El diccionario de la Real Academia Española (R.A.E) define «azar» como una casualidad, un caso fortuito, y afirma que la expresión «al azar» significa «sin orden».1​ La idea de probabilidad está íntimamente ligada a la idea de azar y nos ayuda a comprender nuestras posibilidades de ganar un juego de azar o analizar las encuestas. Pierre-Simon Laplace afirmó: "Es notable que una ciencia que comenzó con consideraciones sobre juegos de azar haya llegado a ser el objeto más importante del conocimiento humano". Comprender y estudiar el azar es indispensable, porque la probabilidad es un soporte necesario para tomar decisiones en cualquier ámbito

4.2.1. Por otro lado Según Amanda Dure, "Antes de la mitad del siglo XVII, el término 'probable' (en latín probable) significaba aprobable, y se aplicaba en ese sentido, unívocamente, a la opinión y a la acción. Una acción u opinión probable era una que las personas sensatas emprenderían o mantendrían, en las circunstancias.

5. Teoría

5.1. La probabilidad constituye un importante parámetro en la determinación de las diversas casualidades obtenidas tras una serie de eventos esperados dentro de un rango estadístico.

5.2. Existen diversas formas como método abstracto, como la teoría Dempster-Shafer y la teoría de la relatividad numérica, esta última con un alto grado de aceptación si se toma en cuenta que disminuye considerablemente las posibilidades hasta un nivel mínimo ya que somete a todas las antiguas reglas a una simple ley de relatividad.[cita requerida]

5.2.1. Los tres métodos para calcular las probabilidades son la regla de la adición, la regla de la multiplicación y la distribución binomial.

5.3. La probabilidad de un evento se denota con la letra p y se expresa en términos de una fracción y no en porcentajes[cita requerida], por lo que el valor de p cae entre 0 y 1. Por otra parte, la probabilidad de que un evento "no ocurra" equivale a 1 menos el valor de p y se denota con la letra q

6. Regla de la multiplicación

6.1. La regla de la multiplicación establece que la probabilidad de ocurrencia de dos o más eventos estadísticamente independientes es igual al producto de sus probabilidades individuales. P (A y B) = P (A B) = P (A) P (B) si A y B son independientes. P (A y B) = P (A B) = P (A) P (B|A) si A y B son dependientes. siendo P (B|A) la probabilidad de que ocurra B habiéndose dado o verificado el evento A. Un lote contiene "100" objetos de los cuales "20" son defectuosos. Los objetos son seleccionados uno después del otro para ver si ellos son defectuosos. Suponga que dos objetos son seleccionados sin reemplazo (significa que el objeto que se selecciona al azar se deja por fuera del lote). ¿Cuál es la probabilidad de que los dos objetos seleccionados sean defectuosos? Solución: Sea los eventos A1 = {primer objeto defectuoso}, A2 {segundo objeto defectuoso} entonces dos objetos seleccionados serán defectuosos, cuando ocurre el evento A1∩ A2 que es la intersección entre los eventos A1 y A2. De la información dada se tiene que: P (A1) = 20/100 ; P (A2/A1) = 19/99

6.2. Regla de Laplace

7. Regla de Laplace

7.1. La Regla de Laplace establece que: La probabilidad de ocurrencia de un suceso imposible es 0. La probabilidad de ocurrencia de un suceso seguro es 1, es decir, P(A) = 1. Para aplicar la regla de Laplace es necesario que los experimentos den lugar a sucesos equiprobables, es decir, que todos tengan o posean la misma probabilidad. La probabilidad de que ocurra un suceso se calcula así: P(A) = Nº de casos favorables / Nº de resultados posibles Esto significa que: la probabilidad del evento A es igual al cociente del número de casos favorables (los casos dónde sucede A) sobre el total de casos posibles.

8. Distribución binomial

8.1. a probabilidad de ocurrencia de una combinación específica de eventos independientes y mutuamente excluyentes se determina con la distribución binomial, que es aquella donde hay solo dos posibilidades, que se suelen designar como éxito y fracaso.

8.2. Hay dos resultados posibles mutuamente excluyentes en cada ensayo u observación.

8.3. La serie de ensayos u observaciones constituyen eventos independientes.

8.4. La probabilidad de éxito permanece constante de ensayo a ensayo, es decir el proceso es estacionario.

8.5. Para aplicar esta distribución al cálculo de la probabilidad de obtener un número dado de éxitos en una serie de experimentos en un proceso de Bernoulli, se requieren tres valores: el número designado de éxitos (m), el número de ensayos y observaciones (n); y la probabilidad de éxito en cada ensayo (p).

9. Aplicaciones

9.1. Dos aplicaciones principales de la teoría de la probabilidad en el día a día son en el análisis de riesgo y en el comercio de los mercados de materias primas. Los gobiernos normalmente aplican métodos probabilísticos en regulación ambiental donde se les llama "análisis de vías de dispersión o separación por medio de ecuaciones", y a menudo miden el bienestar usando métodos que son estocásticos por naturaleza, y escogen qué proyectos emprender basándose en análisis estadísticos de su probable efecto en la población como un conjunto.

9.1.1. Se puede decir razonablemente que el descubrimiento de métodos rigurosos para calcular y combinar los cálculos de probabilidad ha tenido un profundo efecto en la sociedad moderna. Por consiguiente, puede ser de alguna importancia para la mayoría de los ciudadanos entender cómo se calculan los pronósticos y las probabilidades, y cómo contribuyen a la reputación y a las decisiones, especialmente en una democracia.

9.1.1.1. Otra aplicación significativa de la teoría de la probabilidad en el día a día es en la fiabilidad. Muchos bienes de consumo, como los automóviles y la electrónica de consumo, utilizan la teoría de la fiabilidad en el diseño del producto para reducir la probabilidad de avería. La probabilidad de avería también está estrechamente relacionada con la garantía del producto.

10. Ejemplo

10.1. En una pareja, cada uno de sus miembros posee genes para ojos castaños y azules. Teniendo en cuenta que cada uno tiene la misma probabilidad de aportar un gen para ojos castaños que para ojos azules y que el gen para ojos castaños es dominante, obtener la probabilidad de que un hijo nacido de esta pareja tenga los ojos castaños.

10.1.1. Solución

10.1.1.1. Gen de la madre------------ Gen del Padre ------------------ E = {C C, C A, A C, A A}

10.1.1.2. Casos favorables = {C C, C A, A C}

10.1.1.3. Casos posibles = {C C, C A, A C, A A}

10.1.1.3.1. Ojos castaños