1.1. En los modelos icónicos, la relación de correspondencia se establece a través de las propiedades morfológicas, habitualmente un cambio de escala con conservación del resto de las propiedades topológicas. Angel Manuel Felicísimo
2. ANÁLOGO
2.1. Los modelos análogos poseen algunas propiedades similares a los objetos representados pero sin ser una réplica morfológica de los mismos. Angel Manuel Felicísimo
3. MATEMÁTICOS
3.1. el modelado matemático es un proceso mediante el cual, un problema tal como aparece en el mundo real se interpreta en términos de símbolos abstractos, y que dicha descripción abstracta incluye una formulación matemática que se deriva del problema original, por el cual dicho modelo tiene vida propia y una existencia objetiva en el universo. Murthy mencionado por Rojo (2001)
3.2. Los modelos matemáticos (MM) pueden llamarse formales, y que los mismos son un lenguaje creado especialmente para facilitar los razonamientos lógico-deductivos. Varsavsky (1971)
4. SIMBÓLICOS
4.1. Los modelos simbólicos se construyen mediante reglas notablemente más abstractas ya que esta denominación suele aplicarse a los casos e los que el objeto real se representa mediante una codificación matemática, geométrica, estadística, etc. Angel Manuel Felicísimo
5. ESTÁTICOS
5.1. Los modelos estáticos descansan en el paradigma de la estabilidad o permanencia de un cierto orden internacional que permanece inalterable en su esencia a pesar de los cambios que se operan en el panorama de los actores internacionales. Calduch, R
6. FÍSICOS
6.1. Lo definimos como una representación idealizada del sistema, con la enunciación de los atributos que se tomarán en cuenta y la explicitación de las simplificaciones realizadas. Hugo Alberto Kofman