Unlock the full potential of your projects.
Try MeisterTask for free.
¿No tienes una cuenta?
Regístrate Gratis
Navegar
Mapas Destacados
Categorías
Gestión de proyectos
Objetivos de negocio
Recursos humanos
Lluvia de ideas y análisis
Marketing y contenido
Educación y notas
Entretenimento
Vida
Tecnología
Diseño
Resúmenes
Otros
Idiomas
English
Deutsch
Français
Español
Português
Nederlands
Dansk
Русский
日本語
Italiano
简体中文
한국어
Otros
Ver mapa completo
Copiar y editar mapa
Copiar
Chapter 3 Linear Systems
Objetivos de negocio
TC
Troy Cole
Seguir
Comienza Ya.
Es Gratis
Regístrate con Google
ó
regístrate
con tu dirección de correo electrónico
Mapas Mentales Similares
Esbozo del Mapa Mental
Chapter 3 Linear Systems
por
Troy Cole
1. Chapter 3.2
2. Solving systems Algebraically
3. Equivalent systems: systems that have the same solution.
4. Chapter 3.3
5. Systems of Inequalities
6. Ex. x - 2y < 6 y< -3/2x + 5
7. Chapter 3.4
8. Linear Programming
9. Linear Programming: identifies the minimum and maximum.
10. Objective Function: is how the minimum is modeled.
11. Constraints: are the limits on the variables.
12. Feasible Region: is the area on a graph that satisfies all the constraints.
13. Chapter 3.5
14. Graphs in Three Dimension
15. Coordinate Space: is adding a third axis, "z".
16. Ordered Triplets: (X,Y,Z)
17. Trace: when the graph of a pkane intersects one of the coordinate planes in a line.
18. Chapter 3.6
19. Systems with Three Variables
20. Paired for elimination x - 3y + 3z = -4 2x + 3y - z = 15 --------------------- 3x + 2z = 11
21. Solve for "x" 3x + 2z = 11 6x - 2z = 34 ----------------- 9x =45 x=5
22. Graphing Systems of Equations
23. Chapter 3.1
24. System of equations: a set of two or more equations that use the same variables.
25. Linear System: a line that contains two identicle variables.
26. Independent system: has a unique solution.
27. Dependnt system: does not have a unique solution.
28. Ex. y= x + 3 y= -2x + 3
29. Inconsistant system: a system that does not have a solution.
30. Subsitution Ex. 4x + 3y = 4 2x - y = 7
31. Solve for "y" 2x - y = 7 y= 22 -7
32. Subsitute the "y" 4x + 3y =4 4x + 3(2x - 7) =4 4x + 6x - 21 =4 4x + 6x =25 x=2.5.
33. Solve for "y" again y= 2x - 7 y= 2(2.5) - 7 y= -2
34. Final Answer (2.5, -2)
35. Three Systems x - 3y + 3z = -4 2x + 3y - z = 15 4x - 3y - z = 19
36. and....
37. Paired for elimination 2x + 3y - z = 15 4x - 3y - z = 19 ---------------------- 6x - 2z = 34
38. Solve for "z" 3x + 2z =11 3(5) + 2z = 11 ------------------- 2z = -4 z=-2
39. Solve by subsitution x - 3y + 3z = -4 5 - 3y + 3(-2) = -4 5 - 3y - 6 = -4 -3y = -3 y=1
40. Final answer (5,1,-2)
Comienza Ya. ¡Es Gratis!
Conéctate con Google
ó
Regístrate