Prueba de hipótesis

Comienza Ya. Es Gratis
ó regístrate con tu dirección de correo electrónico
Prueba de hipótesis por Mind Map: Prueba de hipótesis

1. Al realizar pruebas de hipótesis, se parte de un valor supuesto (hipotético) en parámetro poblacional. Después de recolectar una muestra aleatoria, se compara la estadística muestral, así como la media (x), con el parámetro hipotético, se compara con una supuesta media poblacional (). Después se acepta o se rechaza el valor hipotético, según proceda. Se rechaza el valor hipotético sólo si el resultado muestral resulta muy poco probable cuando la hipótesis es cierta.

1.1. Planear la hipótesis nula y la hipótesis alternativa. La hipótesis nula (H0) es el valor hipotético del parámetro que se compra con el resultado muestral resulta muy poco probable cuando la hipótesis es cierta.

1.2. Especificar el nivel de significancia que se va a utilizar. El nivel de significancia del 5%, entonces se rechaza la hipótesis nula solamente si el resultado muestral es tan diferente del valor hipotético que una diferencia de esa magnitud o mayor, pudiera ocurrir aleatoria mente con una probabilidad de 1.05 o menos

1.3. Elegir la estadística de prueba. La estadística de prueba puede ser la estadística muestral (el estimador no segado del parámetro que se prueba) o una versión transformada de esa estadística muestral. Por ejemplo, para probar el valor hipotético de una media poblacional, se toma la media de una muestra aleatoria de esa distribución normal, entonces es común que se transforme la media en un valor z el cual, a su vez, sirve como estadística de prueba.

1.4. Establecer el valor o valores críticos de la estadística de prueba. Habiendo especificado la hipótesis nula, el nivel de significancia y la estadística de prueba que se van a utilizar, se produce a establecer el o los valores críticos de estadística de prueba. Puede haber uno o más de esos valores, dependiendo de si se va a realizar una prueba de uno o dos extremos.

1.5. Determinar el valor real de la estadística de prueba. Por ejemplo, al probar un valor hipotético de la media poblacional, se toma una muestra aleatoria y se determina el valor de la media muestral. Si el valor crítico que se establece es un valor de z, entonces se transforma la media muestral en un valor de z

1.6. Tomar la decisión. Se compara el valor observado de la estadística muestral con el valor (o valores) críticos de la estadística de prueba. Después se acepta o se rechaza la hipótesis nula. Si se rechaza ésta, se acepta la alternativa; a su vez, esta decisión tendrá efecto sobre otras decisiones de los administradores operativos, como por ejemplo, mantener o no un estándar de desempeño o cuál de dos estrategias de mercadotecnia utilizar.

2. Afirmación acerca de los parámetros de la población.

3. Hipotesis alternativa

3.1. En muchos casos formulamos una hipótesis estadística con el único propósito de rechazarla o invalidarla. Así, si queremos decidir si una moneda está trucada, formulamos la hipótesis de que la moneda es buena (o sea p = 0,5, donde p es la probabilidad de cara). Analógicamente, si deseamos decidir si un procedimiento es mejor que otro, formulamos la hipótesis de que no hay diferencia entre ellos (o sea. Que cualquier diferencia observada se debe simplemente a fluctuaciones en el muestreo de la misma población). Tales hipótesis se suelen llamar hipótesis nula y se denotan por Ho. Para todo tipo de investigación en la que tenemos dos o más grupos, se establecerá una hipótesis nula

4. Hipotesis alternativa

4.1. Toda hipótesis que difiere de una dada se llamará una hipótesis alternativa. Por ejemplo: Si una hipótesis es p = 0,5, hipótesis alternativa podrían ser p = 0,7, p " 0,5 ó p > 0,5. Una hipótesis alternativa a la hipótesis nula se denotará por H1.