Comienza Ya. Es Gratis
ó regístrate con tu dirección de correo electrónico
El diagrama de Smith por Mind Map: El diagrama de Smith

1. Definición.- La carta de Smith es un diagrama polar especial que contiene círculos de resistencia constante, círculos de reactancia constante, círculos de relación de onda estacionaria constante y curvas radiales que representan los lugares geométricos de desfase en una línea de valor constante; se utiliza en la resolución de problemas de guías de ondas y líneas de transmisión.

2. Usos de la carta de Smith

2.1. La carta de Smith es una herramienta gráfica usada para relacionar un coeficiente de reflexión complejo con una impedancia compleja. Se puede utilizar para una variedad de propósitos, incluyendo la determinación de la impedancia, la adaptación de la impedancia, la optimización del ruido, la estabilidad y otros. La carta de Smith es una ingeniosa técnica gráfica que virtualmente evita todas las operaciones con números complejos. Por ejemplo, se puede determinar la impedancia de entrada a una línea de transmisión dando su longitud eléctrica y su impedancia de carga.

3. Precisión de la carta

3.1. La escala angular en el borde tiene divisiones de 1/500 de una longitud de onda (0,72 grados) y la escala del coeficiente de reflexión se puede leer a una precisión de 0,02, con lo que se demuestra que es absolutamente suficiente para la mayoría de los propósitos. Por ejemplo, si la longitud de onda en cable coaxial en 1 GHz es 20 centímetros, la carta de Smith localiza la posición a lo largo del cable a 20/500 centímetros o 0,4 milímetros y resulta claro a cualquier persona que ha manejado el cable en el 1GHz que no puede ser cortado a esta precisión.

4. La carta de Smith es un tipo de nomograma, usado en ingeniería eléctrica e ingeniería de telecomunicaciones, que muestra cómo varía la impedancia compleja de una línea de transmisión a lo largo de su longitud. Se usa frecuentemente para simplificar la adaptación de la impedancia de una línea de transmisión con su carga.

5. ORIGEN

5.1. La carta de Smith fue desarrollada en los Laboratorios Bell. Debido a los problemas que tenía para calcular la adaptación de las antenas a causa de su gran tamaño, Smith decidió crear una carta para simplificar el trabajo. De la ecuación de Fleming, y en un esfuerzo por simplificar la solución del problema de la línea de transmisión, desarrolló su primera solución gráfica en la forma de un diagrama rectangular.

5.2. Phillip persistió en su trabajo y el diagrama fue desarrollado gradualmente con una serie de pasos. La primera carta rectangular fue limitada por la gama de datos que podría acomodar. En 1936 desarrolló un nuevo diagrama que eliminó la mayoría de las dificultades. La nueva carta era una forma coordinada polar especial en la cual todos los valores de los componentes de la impedancia podrían ser acomodados.

5.3. Las curvas del cociente constante de la onda de la situación, de la atenuación constante y del coeficiente de reflexión constante eran todos los círculos coaxiales con el centro del diagrama. Las escalas para estos valores no eran lineales, pero eran satisfactorias. Con el tiempo la gente que trabaja en este ámbito propuso las cartas para solucionar problemas de las líneas de transmisión.

6. Ventajas principales

6.1. Esta carta es una representación gráfica directa, en el plano complejo, del coeficiente de reflexión complejo. Es una superficie de Riemann, en que el coeficiente de reflexión es cíclico, repitiéndose cada media longitud de onda a lo largo de la línea. El número de medias longitudes de onda se puede representar por un valor de reactancia. Puede ser utilizado como calculadora de la impedancia o de la admitancia, simplemente dándo la vuelta 180 grados (simetría con el origen).

6.2. El interior del círculo unidad representa el caso de reflexión de un circuito pasivo (en el origen no hay reflexión y en el borde, ρ=1, la reflexión es completa), por lo que es la región de interés más habitual. El movimiento a lo largo de la línea de transmisión sin pérdidas da lugar a un cambio del ángulo, y no del módulo o del radio de gamma. Así, los diagramas se pueden hacer fácil y rápidamente.