Create your own awesome maps

Even on the go

with our free apps for iPhone, iPad and Android

Get Started

Already have an account?
Log In

Представление информации в компьютере by Mind Map: Представление информации в
компьютере
0.0 stars - 0 reviews range from 0 to 5

Представление информации в компьютере

Двоичное кодирование информации. Для представления информации в компьютере используется двоичное кодирование, т.к. технические устройства компьютера могут сохранять и распознавать не более двух различных состояний (цифр): намагничен / размагничен (участок поверхности магнитного носителя информации), отражает/не отражает (участок поверхности лазерного диска); и т.д. Информация на компьютере представлена в машинном коде, алфавит которого состоит из цифр (0 и 1). Каждая цифра машинного кода несет информацию в 1 бит.  

Представление чисел в компьютере

Если цифра числа участвует в вычислениях, то число сначала переводится в двоичную систему счисления. Для представления чисел в памяти компьютера используют два формата: формат с фиксированной точкой и формат с плавающей точкой.

Представление целых чисел

Целые числа представляются в формате с фиксированной точкой.  При представлении в компьютере целых чисел положение точки фиксируется всегда после последнего младшего разряда. Множество целых чисел, представимых в памяти ЭВМ, ограничено. Диапазон значений зависит от размера ячеек памяти, используемых для хранения. В k-разрядной ячейке может храниться 2 в степени k различных значений целых чисел.

представление целых отрицательных чисел

представление целых положительных чисел

Представление вещественных чисел

Формат с плавающей точкой использует представление вещественного числа R в виде произведения мантиссы m на основание системы счисления n в некоторой целой степени p, которую называют порядком:R=m*np Для записи внутреннего представления вещественного числа необходимо: 1) перевести модуль данного числа в двоичную систему счисления с 24 значащими цифрами; нормализовать двоичное число; 3) найти машинный порядок в двоичной системе счисления; 4) учитывая знак числа, выписать его представление в 4-х байтовом машинном слове.

Представление текстовой информации

Двоичное кодирование текстовой информации. Кодирование заключается в том, что каждому символу ставится в соответствие уникальный десятичный код от 0 до 255 или соответствующий ему двоичный код от 00000000 до 11111111. Таким образом, человек различает символы по их начертаниям, а компьютер – по их кодам. Присвоение символу конкретного кода – это вопрос соглашения, которое фиксируется в кодовой таблице. При вводе в компьютер текстовой информации происходит ее двоичное кодирование. Пользователь нажимает на клавиатуре клавишу с символом, а в компьютер поступает его двоичный код (последовательность из восьми электрических импульсов). Код символа хранится в оперативной памяти компьютера, где занимает 1 байт. При выводе символа на экран происходит обратный процесс – декодирование, т.е. преобразование кода символа в его изображение.  

Представление графической информации

В процессе кодирования изображения производится пространственная дискретизация. Пространственную дискретизацию изображения можно сравнить с построением изображения из мозаики. Изображение разбивается на отдельные мелкие фрагменты (точки), каждому из которых присваивается код цвета. Качество кодирования зависит от размера точки (чем меньше размер точки, тем качество выше) и от цветовой палитры - количества цветов (чем больше количество, тем выше качество изображения). Формирование растрового изображения. Графическая информация на экране монитора представляет собой растровое изображение, которое формируется из определенного количества строк, содержащих определенное количество точек – пикселей. Качество изображения определяется разрешающей способностью монитора, например, 800*600, 1280*1024. Чем больше разрешающая способность, тем выше качество изображения. Рассмотрим формирование на экране монитора растрового изображения с разрешением 800*600 (800 точек на 600 строк, итого 480 000 точек на экране). В простейшем случае (черно-белое изображение без градаций серого цвета) – каждая точка может иметь одно из двух состояний – ”черная” или “белая”, т.е для хранения ее состояния необходим 1 бит. Таким образом, объем черно-белого изображения (количество информации) равен: = *1 (бит) Цветные изображения формируются в соответствии с двоичным кодом цвета каждой точки (хранится в видеопамяти). Цветные изображения могут иметь различную глубину цвета, которая задается количеством битов, используемых для кодирования цвета, например: 8, 16, 24 или 32 бита. Качество двоичного кодирования изображения определяется разрешающей способностью и глубиной цвета (См. Таблицу 4). Количество цветов N может быть вычислено по формуле: N=2i, где i – глубина цвета. Таблица 4. Глубина цвета и количество отображаемых цветов. Глубина цвета (i) 8 16 (High Color) 24 (True Color) 32 (True Color) Количество изображаемых цветов (N) 28=256 216=65 536 224= 16 777 216 232= 4 294 967 296 Цветное изображение на экране монитора формируется за счет смешивания базовых цветов: красного, зеленого и синего. Для получения богатой палитры цветов базовым цветам могут быть заданы различные интенсивности. Например, при глубине цвета в 24 бита на каждый из цветов выделяется по 8 бит, т.е. для каждого из цветов возможны N=28=256 уровней интенсивности, заданные двоичными кодами от минимальной 00000000 до максимальной 11111111 (См. Таблицу 5). Таблица 5. Формирование некоторых цветов при глубине цвета 24 бита. Название Интенсивность цвета Красный Зеленый Синий Черный 00000000 00000000 00000000 Красный 11111111 00000000 00000000 Зеленый 00000000 11111111 00000000 Синий 00000000 00000000 11111111 Голубой 00000000 11111111 11111111 Желтый 11111111 11111111 00000000 Белый 11111111 11111111 11111111

Представление звуковой информации

Временная дискретизация звука Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда сигнала, тем он громче, чем больше частота, тем выше тон. Для того, чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть превращен в последовательность электрических импульсов (двоичных нулей и единиц). В процессе кодирования непрерывного звукового сигнала производится его временная дискретизация. При этом звуковая волна разбивается на мелкие временные участки, для каждого из которых устанавливается значение амплитуды. На графике это выглядит как замена гладкой кривой на последовательность ”ступенек”, каждой из которых присваивается значение уровня громкости. Чем большее количество уровней громкости будет выделено в процессе кодирования, тем более качественным будет звучание.