СЗМ Сканирующая зондовая микроскопия

Работа по СЗМ.

Kom i gang. Det er Gratis
eller tilmeld med din email adresse
СЗМ Сканирующая зондовая микроскопия af Mind Map: СЗМ Сканирующая зондовая микроскопия

1. Механизм автоматизированного подвода зонда к образцу (захват обратной связи)

1.1. Диапазон перемещений сканера по оси Z составляет около 10 мкм, поэтому перед началом сканирования необходимо приблизить зонд к образцу на это расстояние. Для этого предназначен механизм подвода, схема которого приведена на. Шаговый двигатель 1 при подаче на него электрических импульсов вращает винт подачи 2 и перемещает планку 3 с зондом 4, приближая или отдаляя его от образца 5, установленного на сканере 6. Величина одного шага составляет около 2 мкм.

1.2. Система обратной связи отключается и сканер “втягивается”, т. е. опускает образец в нижнее крайнее положение: 1. Механизм подвода зонда производит один шаг и останавливается. 2. Система обратной связи включается, и сканер плавно поднимает образец, одновременно производится анализ наличия взаимодействия зонд-образец. 3. Если взаимодействие отсутствует, процесс повторяется с пункта 1.

1.3. Если во время вытягивания сканера вверх появится ненулевой сигнал, система обратной связи остановит движение сканера вверх и зафиксирует величину взаимодействия на заданном уровне. Величина силового взаимодействия, при котором произойдет остановка подвода зонда, и будет происходить процесс сканирования, в приборе NanoEducator характеризуется параметром Амплитуда останова (подавление амплитуды): A=Ao·(1- Амплитуда останова).

2. Конструкция сканирующего зондового микроскопа NanoEducator

2.1. На основании 1 расположены сканер 7 с держателем образца 6 и механизм подвода 2 на основе шагового двигателя. Подвод зонда 5, закрепленного на датчике взаимодействия 4, к образцу можно также осуществлять с помощью винта ручного подвода 3. Предварительный выбор места исследования на образце осуществляется с помощью винта 8.

2.2. Конструкция СЗМ NanoEducator: 1 – основание, 2 – механизм подвода, 3 –- винт ручного подвода, 4 – датчик взаимодействия, 5 – винт фиксации датчика, 6 – зонд, 7 – держатель образца, 8 – сканер, 9, 10 – винты перемещения сканера с образцом.

2.3. Функциональная схема прибора NanoEducator 1.Измерительная головка -Зондовый датчик -Предусилитель -Держатель образца -Сканер -Шаговый двигатель 2. Электронный блок -Блок обратной связи -Блок управления шаговым двигателем -Контроллер связи с PC ЦАП, АЦП, Регистры -Блок питания +/-15в -Усилитель высоковольтный X,Y - Синхродетектор -Блок питания +12 В, +5 В -Усилитель высоковольтный Z -Блок питания +250 В 3. Персональный компьютер 4. Видеокамера

3. Универсальный датчик туннельного тока и силового взаимодействия

3.1. В приборе NanoEducator применяется универсальный датчик туннельного тока и модуляционного силового взаимодействия. Датчик выполнен в виде пьезокерамической трубки длиной l=7 мм, диаметром d=1.2 мм и толщиной стенки h=0.25 мм, жестко закрепленной с одного конца. На внутреннюю поверхность трубки нанесен проводящий электрод. На внешнюю поверхность трубки нанесены два электрически изолированных полуцилиндрических электрода. К свободному концу трубки прикреплена вольфрамовая проволока диаметром 100 мкм.

3.2. Свободный конец проволоки, использующейся в качестве зонда, заточен электрохимически, радиус закругления имеет величину 0.2÷0.05 мкм. Зонд имеет электрический контакт с внутренним электродом трубки, соединенным с заземленным корпусом прибора. При измерении туннельного тока пьезотрубка играет роль жесткой пассивной консоли. Электрическое смещение прикладывается к образцу относительно заземленного зонда. Преобразователь, изображенный на рисунке, вырабатывает электрическое напряжение Uт, обуславливающее протекание туннельного тока I и выдает напряжение U пропорциональное этому току в электронный блок.

3.3. В качестве датчика силового взаимодействия одна часть пьезоэлектрической трубки используется как пьезовибратор, а другая – как датчик механических колебаний. К пьезовибратору подводится переменное электрическое напряжение с частотой, равной резонансной частоте силового датчика. Амплитуда колебаний при большом расстоянии зонд-образец максимальна.

3.4. При приближении зонда к поверхности образца зонд начинает касаться образца в процессе колебаний. Это приводит к смещению амплитудно-частотной характеристики (АЧХ) колебаний датчика влево по сравнению с АЧХ, измеренной вдали от поверхности.

4. Сканер

4.1. NanoEducator состоит из измерительной головки, электронного блока, соединительных кабелей и управляющего компьютера. Видеокамера изображена как отдельное устройство, соединенное с компьютером. Сигнал от датчика взаимодействия после преобразования в предусилителе поступает в СЗМ контроллер. Управляющие сигналы от электронного блока поступают в измерительную головку. Управление электронным блоком осуществляется от компьютера через контроллер связи с PC.

4.2. Способ организации микроперемещений, использующийся в приборе NanoEducator, основан на использовании зажатой по периметру металлической мембраны, к поверхности которой приклеена пьезопластинка. Изменение размеров пьезопластинки под действием управляющего напряжения будет приводить к изгибу мембраны. Расположив такие мембраны по трем перпендикулярным сторонам куба и соединив их центры металлическими направляющими, можно получить 3х -координатный сканер

4.3. Каждый пьезоэлемент 1, закрепленный на гранях куба 2, может передвигать прикрепленный к нему толкатель 3 в одном из трех взаимно перпендикулярных направлений – X, Y или Z при приложении к нему электрического напряжения. Как видно из рисунка, все три толкателя соединены в одной точке 4. С некоторым приближением можно считать, что эта точка перемещается по трем координатам X, Y, Z. К этой же точке прикрепляется стойка 5 с держателем образца 6. Таким образом, образец перемещается по трем координатам под действием трех независимых источников напряжения. В приборах NanoEducator максимальное перемещение образца составляет около 50-70 мкм, что и определяет максимальную площадь сканирования.

5. Система обратной связи

5.1. В процессе сканирования зонд может находиться над участками поверхности, имеющими различные физические свойства, в результате чего величина и характер взаимодействия зонд-образец будут изменяться. Кроме того, если на поверхности образца есть неровности, то при сканировании будет изменяться и расстояние ΔZ между зондом и поверхностью, соответственно будет изменяться и величина локального взаимодействия.

5.2. В процессе сканирования производится поддержание постоянной величины локального взаимодействия (силы или туннельного тока) с помощью системы отрицательной обратной связи. При приближении зонда к поверхности сигнал датчика возрастает. Компаратор сравнивает текущий сигнал датчика с опорным напряжением Vs и вырабатывает корректирующий сигнал Vfb, используемый в качестве управляющего для пьезопривода, который отводит зонд от поверхности образца. Сигнал для получения изображения топографии поверхности берется при этом из канала z-пьезопривода.

5.3. Отклик системы обратной связи на возникновение сигнала рассогласования Vfb=V(t) – VS определяется константой цепи обратной связи K или несколькими такими константами. Конкретные значения K зависят от особенностей конструкции конкретного СЗМ, режима работы СЗМ, а также особенностей исследуемой поверхности. В целом, чем больше значение K тем точнее цепь обратной связи отрабатывает черты сканируемой поверхности и тем достовернее данные, получаемые при сканировании.

6. Формат СЗМ данных, способы обработки и представления результатов эксперимента

6.1. Визуализация СЗМ кадров производится средствами компьютерной графики, в основном, в виде двумерных яркостных (2D) и трехмерных (3D) изображений. При 2D визуализации каждой точке поверхности Z=f(x,y) ставится в соответствие тон определенного цвета в соответствии с высотой точки поверхности. При 3D визуализации изображение поверхности Z=f(x,y) строится в аксонометрической перспективе с помощью пикселей или линий. Наиболее эффективным способом раскраски 3D изображений является моделирование условий подсветки поверхности точечным источником, расположенным в некоторой точке пространства над поверхностью. При этом удается подчеркнуть отдельные малые особенности рельефа.

6.2. Информация, полученная с помощью сканирующего зондового микроскопа, хранится в виде СЗМ кадра – двумерного массива целых чисел Zij (матрицы). Каждому значению пары индексов ij соответствует определенная точка поверхности в пределах поля сканирования. Координаты точек поверхности вычисляются с помощью простого умножения соответствующего индекса на величину расстояния между точками, в которых производилось считывание информации. Как правило, СЗМ кадры представляют собой квадратные матрицы, имеющие размер 200x200 или 300х300 элементов.

6.3. Возможные искажения в СЗМ изображениях Полезный сигнал: -Постоянная составляющая -Постоянный наклон -Неидеальность сканера -Шумы аппаратуры -Нестабильность контакта зонд-образец -Шумы, связанные с внешними вибрациями

7. Основы сканирующей зондовой микроскопии

7.1. Микроскопия, как средство получения увеличенного изображения, зародилась еще XV в. когда впервые были изготовлены простые увеличительные стекла для изучения насекомых

7.2. В 20 веке были разработаны методы микроскопии с помощью электронных и ионных пучков.

7.3. В сканирующей зондовой микроскопии использован принцип использования в ней механического зонда, игла.

7.4. Другим важным принципом, отраженным в названии метода СЗМ, является принцип сканирования, т.е. получение не усредненной информации об объекте исследования, а дискретное (от точки к точке, от линии к линии) перемещение зонда и считывание информации в каждой точке.

8. Общая конструкция сканирующего зондового микроскопа

8.1. СЗМ состоит из следующих основных компонентов: 1 – зонд; 2 – образец; 3 – пьезоэлектрические двигатели x, y, z для прецизионного перемещения зонда над поверхностью исследуемого образца; 4 – генератор развертки, подающий напряжения на пьезодрайверы x и y, обеспечивающие сканирование зонда в горизонтальной плоскости; 5 – электронный датчик, детектирующий величину локального взаимодействия между зондом и образцом; 6 – компаратор, сравнивающий текущий сигнал в цепи датчика V(t) с изначально заданным VS, и, при его отклонении, вырабатывающий корректирующий сигнал Vfb; 7 – электронная цепь обратной связи, управляющая положением зонда по оси z; 8 – компьютер, управляющий процессом сканирования и получением изображения (9).

9. Виды датчиков

9.1. В зависимости от природы взаимодействия «зонд-образец» различают: сканирующий туннельный микроскоп (СТМ, детектируется туннельный ток), сканирующий силовой микроскоп (ССМ, детектируется силовое взаимодействие), ближнепольный сканирующий оптический микроскоп (БСОМ, детектируется электромагнитное излучение) и т.п. Сканирующая силовая микроскопия в свою очередь подразделяется на атомносиловую микроскопию (АСМ), магнитно-силовую микроскопию (МСМ), электросиловую микроскопию (ЭСМ) и другие, в зависимости от вида силового взаимодействия.

9.2. Традиционным датчиком силового взаимодействия является кремниевая микробалка, консоль или кантилевер с оптической схемой регистрации величины изгиба кантилевера, возникающего вследствие силового взаимодействия между образцом и зондом, расположенным на конце кантилевера

9.3. Различают контактный, неконтактный и прерывисто-контактный («полуконтактный») способы проведения силовой микроскопии. Использование контактного способа предполагает, что зонд упирается в образец. При использование неконтактного способа зонд удален от поверхности и находится в области действия дальнодействующих притягивающих сил. При «полуконтактном» способе измерений также применяется модуляционная методика измерения силового взаимодействия. В «полуконтактном» режиме зонд частично касается поверхности, находясь попеременно как в области притяжения, так и в области отталкивания.

9.4. При измерении туннельного тока в туннельном датчике используется преобразователь ток-напряжение (ПТН), включенный в цепь протекания тока между зондом и образцом. Возможны два варианта включения: с заземленным зондом, когда напряжение смещения подается на образец относительно заземленного зонда или с заземленным образцом, когда напряжение смещения прикладывается к зонду относительно образца.

10. Процесс сканирования поверхности в СЗМ

10.1. Процесс сканирования поверхности в СЗМ имеет сходство с движением электронного луча по экрану в электроннолучевой трубке телевизора. Зонд движется вдоль линии (строки) сначала в прямом, а потом в обратном направлении (строчная развертка), затем переходит на следующую строку (кадровая развертка). Движение зонда осуществляется с помощью сканера небольшими шагами под действием пилообразных напряжений, подаваемых с генератора развертки (обычно, цифро-аналогового преобразователя).

10.2. К числу основных параметров, выбираемых перед началом сканирования, относятся: - размер скана; - число точек на линии NX и линий в скане NY, определяющие шаг сканирования Δ; - скорость сканирования.

10.2.1. При выборе размера скана необходимо получить наиболее полную информацию о поверхности образца, т.е. отобразить наиболее характерные особенности его поверхности. Выбор размера скана при повторном сканировании осуществляют исходя из данных, полученных на обзорном скане.

10.2.2. Число точек сканирования (NX, NY) выбирается таким образом, чтобы шаг сканирования Δ был меньше характерных ее особенностей, иначе произойдет потеря части информации, заключенной между точками сканирования. С другой стороны, выбор излишнего количества точек сканирования приведет к увеличению времени получения скана.

10.2.3. Скорость сканирования определяет скорость движения зонда между точками, в которых производится считывание информации. Излишне большая скорость может привести к тому, что система обратной связи не будет успевать отводить зонд от поверхности, что приведет к неправильному воспроизведению вертикальных размеров, а так же к повреждению зонда и поверхности образца. Малая скорость сканирования приведет к увеличению времени получения скана.

11. Пьезоэлектрический двигатель. Сканеры

11.1. Для контролируемого перемещения иглы на сверхмалых расстояниях в СЗМ используются пьезоэлектрические двигатели. Их задача – обеспечить прецизионное механическое сканирование зондом исследуемого образца путем перемещения зонда относительно неподвижного образца или перемещения образца относительно неподвижного зонда.

11.2. Работа большинства пьезоэлектрических двигателей, применяемых в современных СЗМ, основана на использовании обратного пьезоэффекта, который заключается в изменении размеров пьезоматериала под действием электрического поля.

11.3. Существует много типов и форм, в которых выпускаются пьезокерамические двигатели. Каждый имеет свой уникальный пьезомодуль от 0.1 до 300 нм/В. Так, керамика с коэффициентом расширения 0.1 нм/В позволяет получить перемещение 0.1 Å при приложении напряжения 100 мВ, что достаточно для получения атомного разрешения.

11.4. Конструкции из пьезокерамик, обеспечивающие перемещение по трем координатам x, y (в латеральной плоскости образца) и z (по вертикали), называются «сканерами». Существует несколько типов сканеров, наиболее распространенными из которых являются треногий и трубчатый.

11.4.1. В треногом сканере перемещения по трем координатам обеспечивают расположенные в ортогональную структуру три независимые пьезокерамики.

11.4.2. Трубчатые сканеры работают посредством изгиба полой пьезоэлектрической трубки в латеральной плоскости и удлинения или сжатия трубки по оси Z. Электроды, управляющие перемещениями трубки в X и Y направлениях, размещаются в виде четырех сегментов по наружной поверхности трубки. Для изгиба трубки в направлении X, на +X керамику подается напряжение для удлинения одной из ее сторон. Тот же самый принцип используется для задания движения в направлении Y. Смещения в X и Y направлениях пропорциональны приложенному напряжению и квадрату длины трубки. Движение в Z направлении генерируется подачей напряжения на электрод в центре трубки. Это приводит к удлинению всей трубки пропорционально ее длине и приложенному напряжению.