Artificial Intelligence Mind Map
af Marcelo Stoppa

1. Machine Learning
1.1. Supervised
1.1.1. Regression
1.1.2. Classification
1.2. Unsupervised
1.2.1. Clustering
1.2.2. Dimensionality Reduction
1.2.3. Anomaly Detection
1.3. Reinforcement
1.3.1. Q-Learning
1.3.2. SARSA
1.3.3. Deep Reinforcement Learning
2. Theory
2.1. Probability Theory
2.2. Linear Algebra
2.3. Combinatorics
2.4. Optimization
2.4.1. Gradient Methods
2.4.2. Stochastic Methods
2.4.3. Genetic Algorithms
3. Neuroscience
3.1. EEG
3.2. fMRI
3.3. PET
3.4. Cortical Column
4. Neural Networks
4.1. Perceptron
4.2. Convolutional
4.3. Recurrent
4.4. Spiking Neural Networks
5. Robotics
5.1. Control Theory
5.2. ROS (Robot Operating System)
5.3. Autonomous Cars
6. Cognitive Models
6.1. Attention
6.2. Memory
6.2.1. Short-term
6.2.2. Long-term
6.2.3. Episodic
6.2.4. Semantic
6.3. Perception
6.3.1. Active Vision
6.3.2. Dynamic Routing
6.3.3. Action Selection
7. Knowledge Representation
7.1. Expert System
7.2. GOFAI (Good Old-Fashioned AI)
7.3. IBM Watson
7.4. Assistants (Siri)
7.5. Robot Sophia
8. Artificial General Intelligence (AGI)
8.1. Consciousness
8.2. Rationality
8.3. Reverse Brain Engineering
8.4. System (BrainMind)
8.5. Cognitive (Multi-brain)
9. AI Ethics
9.1. Existential Problems
9.2. Free Will Problem
9.3. Problem of Consciousness
9.3.1. Easy
9.3.2. Hard