semiconductor devices WHAT DO YOU THINK? COMMENTS ARE WELCOME

Kom i gang. Det er Gratis
eller tilmeld med din email adresse
semiconductor devices WHAT DO YOU THINK? COMMENTS ARE WELCOME af Mind Map: semiconductor devices  WHAT DO YOU THINK? COMMENTS ARE WELCOME

1. III-V

1.1. properties

1.2. applications

2. silicon

2.1. applications

2.1.1. mems/nems

2.1.1.1. mechanical stress testing

2.1.1.2. pressure sensor

2.1.1.3. biomimetic

2.1.1.3.1. mems sensor flow-related controll

2.1.1.4. acceleration sensor: pull-in instability of paddle-type nems sensor

2.1.2. electronics

2.1.2.1. transistor

2.1.2.1.1. logic transistor

2.1.3. self-assembly milli to nano scale

2.2. properties

2.2.1. mechanical

2.2.1.1. gauge factor: 200

2.2.1.2. young's modulus: 130-188 GPa

3. MoS2

3.1. properties

3.1.1. piezoelectricity: piezoelectric coefficient: e11 = 2.9 × 10–10 C m−1

3.1.1.1. piezoelectricity of singl layer mos2 for energy conversion and piezotronics

3.1.2. electrical

3.1.2.1. screening

3.1.2.2. bandgap: intrinsic direct 1.8 eV indirect bandgap 1.2 eV

3.1.2.2.1. bilayer

3.1.2.2.2. strain induced bandgap tuning

3.1.2.3. mobility @ RT: 200 cm^2/Vs

3.1.2.4. on/off ration: 1x10^8

3.1.2.5. doping

3.1.2.6. electrical properties on hBN

3.1.2.7. effect of interlayer coupling on electrical properties

3.1.3. mechanical

3.1.3.1. thickness: 0.65nm

3.1.3.2. mechanical

3.1.3.3. pressure confinement effect

3.1.3.4. strain effect on effective mass

3.1.3.5. gauge factor

3.1.3.5.1. bi-layer: 230

3.1.3.5.2. bulk: 200

3.1.3.6. uniaxial and biaxial strain

3.1.3.7. wettability

3.1.3.8. friction

3.1.4. optical

3.1.4.1. electroluminescence

3.1.4.2. raman spectroscopy

3.1.4.2.1. MoS2 488nm laser

3.1.5. heat conductance: 7.45 W/mK @ 300K suspended monolayer: 34 W/mK suspended multilayer: 52 W/mK

3.1.6. chemical

3.1.6.1. one layer of Mo -sandwiched between two layers of S by covlent bonding packed in hexagonal arrangement

3.1.6.2. sheets held together by weak van der Waals interaction

3.1.6.3. lattice constant:  3.160 Å

3.1.7. thermal

3.2. application

3.2.1. chemical vapor sensor (comparison with graphene devices)

3.2.2. transistor

3.2.2.1. channel

3.2.2.2. contacts

3.2.2.2.1. injet printed Ag contacts

3.2.2.3. CVD grown

3.2.2.3.1. multilayer

3.2.2.3.2. single layer

3.2.2.4. flakes

3.2.2.4.1. single layer

3.2.2.5. flexible transistor

3.2.2.5.1. on polyimide

3.2.2.6. charge trapping at the interface

3.2.2.7. thin film transistor

3.2.2.8. strain sensing

3.2.2.9. self-screened transistor with bottom graphene electrode

3.2.2.10. transfer characteristics

3.2.2.11. suspended transistor

3.2.2.12. intrinsic origin of the hysteresis suspended mos2

3.2.3. supercondictivity

3.2.4. MEMS/NEMS

3.2.4.1. membrane

3.2.4.1.1. resonator

3.2.4.1.2. nanopores open atom by atom

3.2.4.1.3. direct and scalable CVD membranes

3.2.4.1.4. hydrogen separation

3.2.4.1.5. water desalination

3.2.4.2. flexible MoS field-effect transistor for gate-tunable strain sensor

3.2.4.3. bio/medicin

3.2.4.3.1. review: bio sensors

3.2.4.3.2. functionalication rection between mos2 and thiole

3.2.4.4. sensors

3.2.4.4.1. synthesis and sensor applications of mos2-based nanocomposites

3.2.4.4.2. gas sensor

3.2.4.4.3. tactile sensor for electronic skin

3.2.4.5. bending response theory

3.2.5. sensing

3.2.6. supercapacitor

3.2.6.1. MoS2-Graphene composite coin cell supercapasitor

3.2.7. heterostructure

3.2.7.1. electric-field and strain-tunable mos2/h-bn/graphene vertical heterostructure

3.2.7.2. review

3.2.7.3. one-dimensional electrical contacts to mos2 heterostructure

3.3. contacting

3.3.1. graphene electrode

3.3.2. contact resistance

3.3.3. carrier transport at the metal-mos2 interface

3.3.4. metal contacts

3.3.5. vam der waals interaction and lattice mismetch at mos2/metal interfaces

3.3.6. chromium as ideal contact metal

3.4. transfer

3.4.1. wet etch method

3.4.1.1. BOE etch

3.4.1.1.1. spin-coat: ar-p 649.04 30s@1800rpm,2 etch SiO2 with BOE

3.4.1.2. NaOH etch

3.4.1.2.1. spin-coat: ar-p 649.04 30s@1800rpm,2 etch SiO2 with NaOH

3.4.1.3. KOH etch

3.4.1.3.1. spin-coat: ar-p 649.04 30s@1800rpm,2 cratch the corners of the chip place a drop of KOH etch sio2

3.4.2. ultrasound method

3.4.3. pdms stamp

3.4.3.1. mos2 flake

3.4.3.2. polymer free large-area transfer for transistors fragmented mos2

3.4.4. fast Seak and peal in water drop with Polysterene in Touluene polymer

3.4.5. exfoliation

3.4.5.1. liquid phase exfoliation

4. hexagonal boron nitride (hBN)

4.1. porperties

4.1.1. impermeability to everything except to protons

5. carbon nanotubes

5.1. properties

5.2. applications

5.2.1. mems/nems

5.2.1.1. switch

5.2.1.2. pressure sensor

5.2.1.2.1. pmma based

5.2.2. electronics

5.2.2.1. transistor

5.2.2.1.1. logic transistor

5.3. synthesis

6. graphene

6.1. transfer

6.1.1. wet-etch method

6.1.1.1. dry transfer with spacer substrate

6.1.1.2. copper on sio2 pattern graphene underetch copper leave graphene on sio2

6.1.2. cleaning

6.1.2.1. dry-cleaning with active graphite

6.1.2.2. polymer scaffolds

6.1.2.3. thermal annealing at 300°C for 3 hours under UHV

6.1.2.4. metal cleaning, crackless, wrinkleless

6.1.2.5. acetic acid and methanol

6.1.2.6. residue reduction

6.1.3. exfoliation

6.1.3.1. on SiC

6.1.3.2. liquid phase exfoliation

6.1.3.3. polymer nanoparticles assisted exfoliation

6.1.4. nano imprint

6.1.5. glue on substrate

6.1.5.1. epoxy

6.1.6. copper evaporation

6.1.7. carbon atom diffusion through copper

6.1.8. large area patterning transfer with holographic lithography

6.1.9. polymer assisted

6.1.9.1. polymer free transfer with cellulose acetate

6.1.9.2. dry PI polymer transfer (copper reuse)

6.1.9.3. roll-to-roll transfer method

6.1.9.4. pet assisted transfer method

6.1.9.5. soak and peel method

6.1.9.6. dry pdms stamp transfer

6.1.9.6.1. pdms stamp with o2 plasma before stamp on cu foil: 30W, 15s O2 plasma enhance adhesion

6.1.9.6.2. pdms transfer without pmma pdms remove by methylene chloride

6.1.9.6.3. large area suspended graphene transfer with pdms

6.1.9.6.4. low temperature, metal assisted

6.1.9.7. dry thermal release tape

6.1.9.8. vacuum assisted transfer -remove of adsorbants - use standard wet transfer

6.1.9.9. pmma and ab-glue

6.1.9.10. spin-coater assisted transfer to polymer substrate

6.1.9.11. resiude fre pmma remove with ar+ ion beam

6.1.10. by oxidation-assited water intercalation

6.1.11. etch free-transfer

6.1.11.1. transfer free suspended graphene

6.1.11.2. electrochemical transfer method

6.1.11.2.1. bubble method

6.1.11.2.2. agarose gel method

6.1.11.2.3. pdms assisted without pores

6.1.11.2.4. electro-exfoliating grapene from graphite

6.1.11.2.5. bubble transfer with polymer support with inclosed air bubble

6.1.11.3. polyvinyl alcohol (PVA) film

6.1.11.4. dry-transfer

6.1.11.4.1. dry transfer with bN

6.1.11.4.2. selective dry transfer

6.1.11.4.3. dry electrostatic method

6.1.11.5. water-mediated and instataneous transfer

6.1.12. support free transfer with SAM modified substrate

6.1.13. wetting assisted transfer

6.1.14. polymer free transfer

6.1.14.1. graphene growth on patterned mo and removal of ma with sulfuric acid

6.1.14.2. with Ti as transfer layer removed with hf

6.1.14.3. using hexane

6.2. properties

6.2.1. mechanical

6.2.1.1. intrinsic strength: prestine graphene 90 - 121 GPa (30 N/m)

6.2.1.1.1. defective graphene ~50 GPa (18 N/m)

6.2.1.1.2. policrystalline

6.2.1.2. young's modulus: prestine and cvd graphene 1 TPa

6.2.1.3. Stretchability: 20%

6.2.1.4. impermeability to everything but protons

6.2.1.5. strain

6.2.1.5.1. uniaxual strain - deformation

6.2.1.5.2. uniaxial strain in bilayer graphene unisotropic phonon softening

6.2.1.6. Thickness: 0.34 nm

6.2.1.7. defect introduction through Argon irradiation

6.2.1.8. crack propagation

6.2.1.8.1. self healing of cracks

6.2.1.8.2. fracture of graphene (review)

6.2.1.9. wet adhesion

6.2.1.10. adhesion

6.2.1.10.1. strong adhesion to sio2

6.2.1.10.2. weak adhesion on pdms --> low surface energy

6.2.1.10.3. temperature-dependent adhesion on a trench

6.2.1.11. suspended

6.2.1.11.1. <10nm thick graphene: spring constant: 1-5 N/m

6.2.1.12. critical temp and radus for buckling

6.2.1.13. topography

6.2.1.14. small scale pull-in instability and vibration

6.2.1.15. gauge factor

6.2.1.15.1. exfoliated graphene

6.2.1.15.2. cvd graphene

6.2.2. electrical

6.2.2.1. high electron mobility

6.2.2.1.1. on bulk

6.2.2.1.2. suspended prestine at room temperature: 230000 cm2/Vs

6.2.2.1.3. suspended low temperature: order of 1000000 cm2/Vs

6.2.2.1.4. mobility extraction

6.2.2.1.5. CVD graphene on hBN: 350000 cm^2/Vs

6.2.2.1.6. CVD-graphene

6.2.2.1.7. exfoliated

6.2.2.2. screening

6.2.2.2.1. on hBN

6.2.2.3. electrical field

6.2.2.4. electrostatic

6.2.2.5. sheet resistance: 500 Ohm/square (wet transfer)

6.2.2.5.1. multilayer

6.2.2.5.2. depending on transfer

6.2.2.6. band structure

6.2.2.6.1. bandgap

6.2.2.7. breakdown current density

6.2.2.7.1. nanoribbons: width 16nm: 10^8 A/cm^2

6.2.2.8. effect of humidity on electrical properties

6.2.2.9. effect of interlayer coupling on electrical properties

6.2.2.10. surface electrical properties

6.2.3. optical

6.2.3.1. transparency: mono layer 97.7%

6.2.3.1.1. multilayer

6.2.3.1.2. fine structure constant

6.2.3.2. reflection: few layer: <0.1% > 10 layer: 2%

6.2.3.3. absorption: 300 - 2500 nm peak at 270 nm

6.2.3.4. photoresponse

6.2.3.5. raman

6.2.3.5.1. graphene 514nm and 633 nm laser

6.2.3.6. absorption: 2.3%

6.2.4. piezoresistivity

6.2.4.1. positive piezoconductive

6.2.5. chemical

6.2.5.1. hexagonal honeycomb lattice of carbon atoms in sp2 hybridization

6.2.5.2. remaining pz forms C-C pi bond

6.2.5.3. two atom A and B unit cell

6.2.5.4. superhydropobic graphene

6.2.5.4.1. superhydrophobic to superhydrophilic

6.2.5.5. intersurface interaction

6.2.6. thermal

6.2.6.1. exfoliated graphene

6.2.6.1.1. suspended heat conductivity: 5150 W/mK

6.2.6.1.2. thermal conductvity of suspended graphene with defect graphene

6.2.6.1.3. heat transport

6.2.6.1.4. thermal expansion coefficient: -7 × 10−6 K−1

6.2.6.2. CVD-graphene

6.2.6.2.1. suspended heat conductivity: 5150 W/mK

6.3. applications

6.3.1. mems/nems

6.3.1.1. membrane

6.3.1.1.1. pressure sensor

6.3.1.1.2. switch

6.3.1.1.3. accelerometer

6.3.1.1.4. loudspeaker

6.3.1.1.5. resonator

6.3.1.1.6. memory device

6.3.1.1.7. detection

6.3.1.1.8. with local gate control

6.3.1.1.9. electricity generation

6.3.1.1.10. TMD growth on suspended graphene

6.3.1.1.11. suspended graphene

6.3.1.1.12. membrane fabrication with tunable structures

6.3.1.1.13. strain sensor

6.3.1.1.14. microphone

6.3.1.1.15. fabrication

6.3.1.1.16. bio and medicin

6.3.1.1.17. characterization

6.3.1.1.18. properties

6.3.1.1.19. water desalination using nanoporous graphene

6.3.1.2. piezoelectric strain gauge

6.3.1.3. force sensor

6.3.1.4. nano bots

6.3.1.5. mechanical control of graphene on pyramidal structures

6.3.1.6. mos2 chemical vapor sensor (comparison with graphene devices)

6.3.1.7. hall sensor

6.3.1.7.1. quantum hall effect

6.3.1.8. transparent micro heater

6.3.1.9. tactile sensing with array of graphene woven nanofabrics

6.3.1.10. chemical sensor

6.3.1.10.1. gas sensor

6.3.1.11. control of nitrogen-vacancy defect emission

6.3.1.12. bio

6.3.1.12.1. bioanalytical applications

6.3.1.12.2. biosensor

6.3.1.12.3. bio-inspired strain sensors

6.3.1.12.4. biomedical applications

6.3.1.13. pressure sensor

6.3.1.13.1. pressure sensor with si3n4 membare and graphene strain elements

6.3.1.13.2. biomedical pressure sensor

6.3.1.13.3. electronical skin high speed rapid response criss cross graphene pattern

6.3.1.14. strain sensor for human motion monitoring

6.3.1.15. micromechanics

6.3.1.15.1. measurement of nanocrystalline graphnee

6.3.2. electronics

6.3.2.1. transistor

6.3.2.1.1. bilayer transistor

6.3.2.1.2. nanoribbon transistor

6.3.2.1.3. rf transistor

6.3.2.1.4. gbt (tunneling transistor)

6.3.2.1.5. Graphene field-effect device (GFET)

6.3.2.1.6. characterisation

6.3.2.1.7. terahetz detector

6.3.2.1.8. flexible

6.3.2.1.9. large scale integration

6.3.2.1.10. suspended

6.3.2.2. diode

6.3.2.3. circuits

6.3.2.3.1. flexible

6.3.2.4. solar cells

6.3.2.4.1. graphene molecules

6.3.2.5. supercapacitor

6.3.2.5.1. flexible

6.3.2.5.2. 3d graphene-based for application in supercapacitors

6.3.2.6. flexible electronics

6.3.2.6.1. tunable filed effect properties - low k-dielectric

6.3.3. folding

6.3.3.1. liquid evaporation driven

6.3.4. composite materials

6.3.4.1. graphene polymer Transparent, Flexible, and Conducting Films

6.3.5. optics

6.3.5.1. optoelectonics

6.3.5.1.1. photodetector

6.3.5.1.2. selectively enhanced photocurrent on twisted bilayer

6.3.5.2. photonics

6.3.5.3. light emission from graphene

6.3.5.3.1. nanocrystalline graphene

6.3.5.4. macroscopic and direct light propulsion of bulk graphene

6.3.6. heterostructures

6.3.6.1. graphene/hBN

6.3.6.2. electric-field and strain-tunable mos2/h-bn/graphene vertical heterostructure

6.3.6.3. graphene based heterostructure

6.3.7. superhydrphobic graphene

6.3.8. high temperature thin film devices

6.3.9. filtration and desalination of water

6.3.10. sensing

6.3.11. contacts

6.3.11.1. flexible

6.3.12. stability of few layer graphene doped with gold chloride

6.4. contacting

6.4.1. as electrode for mos2

6.4.2. interconnects

6.4.3. contact resistance

6.4.4. bottom graphene electrode

6.5. review

6.6. passivation

6.7. mulitlayer graphene

6.7.1. layer-by-layer stacking

6.7.1.1. stacking on copper without removing top pmma

6.7.1.2. stacking and removing pmma on substrate layer-by-layer

6.7.1.3. problem: increasing roughness

6.7.2. bernal stacked

6.8. graphene oxid (GO)

6.8.1. properties

6.8.1.1. mechanical

6.8.1.1.1. young's modulus: 0.15 +- 0.03 TPa

6.8.1.1.2. intrinsic strength: 4.4 +- 0.6 GPa (3.1 +- 0.4 N/m)

6.8.1.1.3. thickness: 0.7 nm

6.8.2. application

6.8.2.1. membrane

6.8.2.1.1. oil and water separation

6.9. graphene ink

6.9.1. properties

6.9.1.1. improve by laser-annealing

6.10. analytics

7. OSTE+

7.1. application

7.1.1. robust microdevices

7.1.2. improved photo structuring

8. WSe2

8.1. applications

8.1.1. light emitting tunneling transistor

9. WS2

9.1. properties

9.1.1. optical

9.1.1.1. photolminescence

9.2. contacting

9.2.1. chromium as ideal contact metal

9.3. applications

9.3.1. photodetector

9.3.2. mems/nems

9.3.2.1. gas sensor

9.3.2.2. humidity sensor

10. fabrication processes

10.1. Evaporation

10.2. Sputtering

10.3. Wet etching

10.3.1. copper

10.3.1.1. Sodiumpersulfate 20g/500ml H2O

10.3.1.2. FeCl3 8%: 20g FeCl3 + 230g H2O

10.3.2. sio2

10.3.2.1. Buffered oxide etch (BOE) 5:1 Buffered oxide etch (BOE), 5:1 Buffered HF, (5 40% NH4F:1 49%HF): 100 nm/min (thermal oxide)

10.3.2.2. concentrated HF (49%)

10.3.2.3. 10:1 HF 10 H2O: 1 HF: 23nm/min (thermal oxide)

10.3.2.4. HF vapor HF + H2O vapor, 1cm over dish with 49% HF: 66 nm/min (thermal oxide)

10.3.3. silicon nitride (Si3N4)

10.3.3.1. Buffered oxide etch (BOE), Buffered HF 5:1 Buffered oxide etch (BOE), 5:1 Buffered HF, (5 40% NH4F:1 49%HF): 60 nm/min (PECVD)

10.3.3.2. phosphoric acid

10.3.4. Si

10.3.4.1. KOH Isotropic, 30% by weight, 80°C: 1100 nm/min

10.3.5. poly si

10.3.5.1. KOH Isotropic, 30% by weight, 80°C: >1000 nm/min

10.3.6. Aluminum

10.3.6.1. KOH 30% by weight, 80°C: >800 nm/min

10.4. Dry etching

10.4.1. graphene

10.4.1.1. RIE: O2 80sccm O2 57mtorr 80W 20s

10.4.2. sio2

10.4.2.1. RIE: CF4 +O2 60mtorr 100W 44 nm/min (thermal oxide)

10.4.2.2. RIE: SF6 + Ar 40sccm SF6 30sccm Ar 10mtorr 50W 33nm/min

10.4.3. si

10.4.3.1. RIE: SF6 + Ar 40sccm SF6 30sccm Ar 10mtorr 50W 1500nm/min

10.4.4. Si3N4

10.4.4.1. RIE: SF6 + Ar 40sccm SF6 30sccm Ar 10mtorr 50W 150nm/min

10.4.5. mos2

10.4.5.1. RIE: BCl3 + Ar 15sccm BCl3 60sccm Ar 0.6 Pa 50W 5min

10.4.5.2. RIE: Ar coupled plasma RIE (CCP-RIE) 100 sccm Ar 10 Pa 50W > 90s

10.4.5.3. Layer by layer etching with cl and ar

10.5. Photolithography

10.5.1. photoresists

10.5.1.1. positive exposed to light becomes soluble unexposed remains insoluble

10.5.1.1.1. SPR 700-1.2

10.5.1.1.2. LOR 5A

10.5.1.2. negative exposed to light becomes insoluble unexposed is dissolved by developer

10.5.1.2.1. OSTE+

10.5.1.2.2. SU-8

10.5.2. systems

10.5.2.1. karl suss MJB-3 mask aligner

10.5.2.2. karl suss MA6/BA6 mask aligner

10.6. E-beam lithography

10.6.1. e-beam resists

10.6.1.1. negative exposed to e-beam becomes insoluble unexposed is dissolved by developer

10.6.1.1.1. AZ nLof 2007

10.6.1.1.2. su-8

10.6.1.2. positive exposed to e-beam becomes soluble unexposed remains insoluble

10.6.1.2.1. AR-P 679.02

10.6.1.2.2. AR-P 649.04

10.6.1.2.3. AR-P 617.14

10.6.2. systems

10.6.2.1. Raith

10.6.2.2. FEI + Raith Elphy Quantum

10.6.3. graphene fabrication

10.6.4. graphen small hole kitting

10.7. Plasma enhanced chemical vapor deposition (PECVD)

10.8. Critical point drying (CPD)

10.9. atomic layer deposition (ALD)

10.9.1. graphene

10.9.1.1. selective deposition of al2o3 on graphene

10.9.2. mos2 self-limiting

10.10. annealing

10.10.1. rapid thermal annealing (RTA)

10.10.2. forming gas annealing

10.10.2.1. system

10.10.2.1.1. hereus oven

10.10.3. remove PMMA (200nm): Haereus oven ramp: 10°C/min 450°C for 1h Ar/H2 (5%) (3 l/min / 0.1 l/min)

10.11. wafer dicing

10.12. spin-coating

10.13. synthesis

10.13.1. chemical vapor deposition (CVD)

10.13.1.1. Thermal chemical vapor deposition (thermal CVD)

10.13.1.1.1. graphene

10.13.1.1.2. mos2

10.13.1.1.3. TMDs

10.13.1.1.4. hBN

10.13.1.2. Plasma enhanced chemical vapor deposition (PECVD)

10.13.1.2.1. graphene

10.13.2. graphene synthesis directly on polymer

10.13.2.1. FET as carbon source patterned 30nm Ni layer as catalysator laser treatmentfor direct synthesis

10.13.3. lpcvd

10.13.3.1. large-area hbn

10.13.4. molecular beam epitaxy

10.13.4.1. graphene

10.13.4.1.1. on hBN

10.13.4.2. visualization of grain sturcture of 2d materials

11. analytics

11.1. Atomic force microscope (AFM)

11.1.1. systems

11.1.1.1. PSIA XE-100

11.1.1.1.1. tapping mode (dynamic force microscopy): - use NC-mode and NC-tip - at 5kHz adjust drive that resonance peak is in y-units 1-3 - set-point a little left of resonance peak - line set-point bit higher than half the resonance peak height best parameters: - gain: 2.2 - scan speed: 0.7 Hz

11.1.1.1.2. non contact mode (nc-mode): - use NC-mode and NC-tip - at 5kHz adjust drive that resonance peak is in y-units 1-3 - set-point a little right of resonance peak - line set-point bit higher than half the resonance peak height best parameters: - gain: 2.2 - scan speed: 0.3 Hz

11.2. scanning electron microscope (SEM)

11.3. focused ion beam (FIB)

11.4. Raman Spectroscopy

11.4.1. graphene 532nm and 633 nm laser

11.4.1.1. single layer spectrum

11.4.1.1.1. D-peak: defect peak ~1350 cm^-1

11.4.1.1.2. G-peak (4x 2D-peak): ~1580 cm^-1

11.4.1.1.3. 2D- peak: ~2700 cm^-1

11.4.1.2. multilayer spectrum

11.4.1.2.1. 5+ layer not distinguishable from graphite

11.4.1.3. suspended graphene

11.4.1.3.1. probing mechanical properties of graphene

11.4.1.3.2. ripple formation in suspended graphene

11.4.1.3.3. strain effect on suspended graphene by polarized raman

11.4.1.3.4. probing charged impurities in suspended graphene

11.4.1.3.5. intrinsic properties of exfoliated free-standing graphene

11.4.1.3.6. raman of graphene and bilayer under biaxial strain (bubbles)

11.4.1.3.7. uniaxial strain on graphene

11.4.1.3.8. elastic properties of suspended graphene

11.4.1.3.9. raman spectroscopy and kelvin force probe microscopy

11.4.1.3.10. temperature

11.4.1.4. on substrate graphene

11.4.1.4.1. nanometer-scale strain variation in graphene

11.4.1.4.2. interface coupling in twisted multilayer graphene

11.4.1.4.3. rayleigh imaging of graphene and graphene layers

11.4.1.4.4. spacially resolved raman of single- and few-layer graphene

11.4.1.4.5. graphene fingerprint

11.4.1.4.6. thickness-dependent native strain

11.4.1.4.7. surface-enhanced raman scattering of hybrid structures with ag nanoparticles ans graphene

11.4.2. MoS2 488nm laser

11.4.2.1. 382.9 cm^-1 406.0 cm^-1

11.4.2.2. on hBN

11.4.2.2.1. raman shift

11.4.2.3. mos2 on substrate

11.4.2.3.1. shift in electron irradiated monolayer

11.4.3. hBN

11.5. Keithley SCS 4200 Parameter Analyzer

11.6. Light Microscope

11.6.1. light field

11.6.2. dark field

11.7. Elipsometry

11.8. Laser confocal microscope

11.8.1. brands

11.8.1.1. Olympus LEXT OLS4100

11.9. probe station

11.9.1. Lakeshore cryo probestation

12. theory

12.1. electrical

12.1.1. resistivity: ρ = R * A / l = [ Ωm] ρ: resistivity R: resistance A = w * t: cross section area = width * thickness l: length most used: Ωmm, Ωµm

12.1.2. capacitance: C = ε_0 * ε_r * A / h = [F] C: capacitance ε_0: permitivity ε_r: relative permitivity A: area h: plate distance

12.1.2.1. dieelectric capacitance: C = ε_0 * ε_r / t_ox = [F] C: capacitance ε_0: permitivity ε_r: relative permitivity t_ox: oxide thickness

12.1.3. pull-in voltage: V_pull-in = sqrt(2/3)^3 * (k * h^3 / ε_0 * ε_r *A)) V_pull-in: pull-in voltage k: spring constant h: plate distance ε_0 permitivity ε_r: relative permitivity A: area

12.1.4. electron mobility (graphene): µ = (L / W) * g_m / C_ox * V_ds µ: mobility L: channel length W: channel width g_m provided by keithley g_m = dI_ds/dV_g at each V_gs point is calculated for each g_m point g_m = I_ds / ( V_gs - V_d) or for each g_m point g_m = (y2-y1)/(x2-x1) V_ds: source-drain voltage C_ox: oxide capacitance C_ox = ε_0 * ε_r / d_ox ε_0 permitivity ε_r: relative permitivity d_ox: oxide thickness

12.1.5. gate leakage: - parallel shift of the curve indicates a gate leakage - always check I_gate and plot it while measurement

12.2. mechanical

12.2.1. mechanical stress: σ = F / A = [N/m^2] σ: mechanical stress F: force A = w * t: cross section area = width * thickness

12.2.2. mechanical strain: ε = σ / E = s / l = [ ] ε: mechanical strain σ: mechanical stress E: young's modulus s: displacement due to mechanical strain l: length

12.2.3. force

12.2.3.1. Force (related to mechanical stress): F = A * E * ε = [N] F: force A = w * t: cross section area = width * thickness ε: mechanical strain

12.2.3.2. electrostatic force: F = 1/2 * ε_0 * ε_r * A * (V^2 / h^2) = [N] F: eletrostatic force ε_0: permitivity ε_r: relative permitivity A: area V: voltage h: plate distance

12.2.4. gauge factor: η = ΔR / ε * R η: gauge factor ΔR: change in resistance R: resistivity ε: strain: ε = (P * L / µ)^2/3 ε: strain P: pressure L: length of cavity µ: graphene shear modulus (150 N/m) --> ΔR / R = η (P * L / µ)^2/3

12.3. circuits

12.3.1. types

12.3.1.1. ring oscilator - series of at least 3 inverters (inverter: nmos+pmos) - final output of the last is inertial input in the first - final output is inverted of the inertial input - channel takes some time to charge - oscillation starts spontaneously - increase of frequency: 1. increase applied voltage 2. smaller number of inverters

12.3.1.2. inverter - 1 nmos and 1 pmos together - input voltage is inverted

12.4. units

12.4.1. electrical

12.4.1.1. E- field: N / C = V / m = kg * m / s^3 * A

12.4.1.2. Volts: V = W / A = m^2 * kg / s^3 * A

12.4.1.3. Farad: F = C / V = s^4 * A^2 / m^2 * kg

12.4.1.4. Ohm: Ω = V / A = m^2 * kg / s^3 * A^2

12.4.1.5. Coulomb: C = A * s

12.4.2. mechanical

12.4.2.1. Pascal: Pa = N / m^2 = kg / m * s^2

12.4.2.2. newton: N = m * kg / s^2

12.4.2.3. Watt: W = J / s = m^2 * kg / s^3

12.4.2.4. Joule: J = N * m = m^2 * kg / s^2 = eV * C

12.5. optical

12.5.1. wavenumber: k = 2 * π / λ = [1 / m] k: wavenumber λ: wavelength

12.5.2. wavelength: λ = 1.24 / h * ν = [µm] λ: wavelength hν: energy in eV

12.6. constants

12.6.1. mechanical

12.6.1.1. speed of light: c = 2.9981e8 m/s

12.6.1.2. atomic mass unit: u = 1.66e-27 kg

12.6.1.3. boltzmann's constant: k = 1.38e-23 J/K = 8.62e-5 eV/K

12.6.1.4. electron rest mass: m_0 = 9.11e-31 kg m_o c^2 = 5.11e5 eV

12.6.1.5. proton rest mass: m_p = 1.67e-27 kg m_p c = 9.38e8 eV

12.6.1.6. neutron rest mass: m_n = 1.67e-27 kg m_n c^2 = 9.38e8 eV

12.6.1.7. planck's constant: h = 6.63e-34 Js = 4.41e-15 eVs ћ = 1.05e-34 Js = 6.58e-16 eVs

12.6.1.8. avogadro's number: N_A = 6.02e23 molecules/mole

12.6.1.9. energy at room temperature: kT = 0.0259 eV = 4.11e-21 J = 9.83e-22 cal = 4.114 pN * nm

12.6.2. electrical

12.6.2.1. elementary charge: q = 1.602e-19 C

12.6.2.2. permittivity: ε_0 = 8.85e-12 F/m = 8.85e-15 F/cm

12.6.3. optical

12.7. midnight formula: x_1/2 = -b +- sqrt(b^2 - 4 * a * c)/2 * c

13. packaging

13.1. pressure sensor

13.1.1. polymer package

14. other material

14.1. applications

14.1.1. suspended

14.1.1.1. ru nanosheets for water splitting

14.1.2. mems/nems

14.1.2.1. pressure sensor

14.1.2.1.1. flexible pressure sensor based on pdms and elastomer film

14.1.2.2. gas sensor

15. off-topic

15.1. nanotechnology

15.1.1. nanotechnology solutions for global water challenges

16. review

16.1. new materials for post-si computing

16.2. 2d materials for electronic applications