1. Factoring
1.1. Common Factoring
1.1.1. Factoring Trinominals (3 Terms)
1.1.1.1. Complex trinomial (when coefficient a > 1)
1.1.1.1.1. ax^2+ bx+c
1.1.1.2. Simple trinominal (when coefficient a is = 1)
1.1.1.2.1. x^2+bx+c
1.1.1.3. Perfect square trinominals
1.1.1.3.1. a^2+2ab+b^2=(a+b)^2
1.1.1.3.2. a^2-2ab+b^2=(a-b)^ 2
1.1.2. Factoring Binominals (2 terms)
1.1.2.1. Differences of squares
1.1.2.1.1. a^2-b^2=(a+b)(a-b)
1.1.2.2. Common factor Binominals
1.1.2.2.1. a(x-y)-b(x-y)
1.1.3. Factoring by Grouping (4 terms)
1.1.3.1. Find GCF between two pairs
1.1.3.1.1. Example: x^3-6x^2+10x-60--->=x^2(x-6)+10(x-6)
1.2. Quadratic Equation
1.2.1. Completing the square
1.2.1.1. convert standard form to vertex form
1.2.1.1.1. factor all the terms by the a(ex.2s^2+4d+4=2(x^2+2x+2)
1.2.2. Quadratic formula (only used in standard form)
1.2.2.1. solving the quadratic equation standard form
1.2.2.1.1. -b+/-√ b^2-4ac divided by 2a
2. Expanding
2.1. Expanding Different Types
2.1.1. Product of sum and differences (No Middle term)(Similar to the differences of square in factoring)
2.1.1.1. (a+b)(a-b)=a^2-b^2
2.1.2. Perfect Square trinominals (Similar to factoring perfect square trinominals but expanding)
2.1.2.1. (a+b)^2= a^2+ 2ab+b^2
2.1.2.2. (a-b)^2= a^2-2ab+b^2
2.1.3. Expanding Binominals
2.1.3.1. Method (F)irst(O)utside(I)nside(L)
2.1.3.1.1. (a+b)(c+d)=ac+ad+bc+bd