1. Chapter6
1.1. cells
1.1.1. what are the types?
1.1.1.1. prokaryotic
1.1.1.1.1. have double membrane system inside
1.1.1.2. eukaryotic
1.1.1.2.1. membranes compartmentalize fumctions
1.1.1.2.2. mitochondria
1.1.1.2.3. chloroplasts
1.1.2. what are the similarities?
1.1.2.1. plasma membrane
1.1.2.2. cytosol
1.1.2.2.1. both prokaryotes and eukaryotes have the gel-like cytosol, a water-based solution that contains ions, small molecules, and macromolecules
1.1.2.3. chromosomes
1.1.2.4. ribosomes
1.1.2.4.1. tiny complexes that make proteins based on instructions contained in genes
1.1.3. what are the differences?
1.1.3.1. location of DNA
1.1.3.1.1. nucleoid
1.1.3.1.2. nucleus
1.1.3.2. size of cells
1.1.3.2.1. Eukaryotic cells are generally much larger than prokaryotic cells.
1.1.3.3. complexity
1.1.3.3.1. eukaryotic are more structurally complex
1.1.3.3.2. prokaryotic are more chemically complex
1.1.4. why is there an upper limit on size?
1.1.4.1. cellular metabolism requires nutrients to pass in & out at a pace which can only be kept with a large surface area
1.1.4.1.1. bacteria 1-5 micro meter in diameter
1.1.4.1.2. eukaryotic 10-100 micro meter in diameter
1.1.4.2. Rates of chemical exchange across the plasma membrane would be inadequate to maintain a cell with a very large cytoplasm.
1.1.4.3. as a cell increases in size, its volume inreases faster than its surface area
1.1.4.3.1. Area is proportional to a linear dimension squared, whereas volume is proportional to the linear dimension cubed.
1.1.4.3.2. As a result, smaller objects have a higher ratio of surface area to volume.
1.2. membranes
1.2.1. participate in metabolism
1.2.2. structure?
1.2.2.1. double layer of phospholipids
1.2.2.1.1. Each type of membrane has a unique combination of lipids and proteins for its specific functions.
1.2.3. many enzymes are built into them
1.2.3.1. enzymes embedded in the membranes of mitochondria function in cellular respiration
1.2.4. provide different local environments
1.2.5. allow incompatible processes to occur simultaneously
1.3. endomembrane system
1.3.1. function(s)?
1.3.1.1. regulates protein traffic
1.3.1.2. performs metabolic functions in the cell
1.3.2. components?
1.3.2.1. Rough ER
1.3.2.1.1. function(s)?
1.3.2.1.2. component(s)?
1.3.2.2. Smooth ER
1.3.2.2.1. storage of calcium ions
1.3.2.3. Golgi Apparatus
1.3.2.3.1. function(s)
1.3.2.3.2. components
1.3.2.3.3. summary?
1.3.2.4. Lysosomes
1.3.2.4.1. function(s)?
1.3.2.4.2. component(s)?
1.3.2.4.3. summary?
1.3.2.4.4. disorder(s)?
1.3.2.5. Vacuoles
1.3.2.5.1. summary?
1.3.2.5.2. type(s)?
1.4. endosymbiont theory
1.4.1. evidence?
1.4.1.1. dual membrane
1.4.1.2. ribosomes & circular DNA
1.4.1.3. semi autonomous growth and reproduction
1.4.2. example(s)
1.4.2.1. mitochondria
1.4.2.1.1. compartment(s)?
1.4.2.1.2. component(s)?
1.4.2.2. chloroplasts
1.4.2.2.1. compartment(s)?
1.4.2.2.2. component(s)
1.4.2.2.3. family?
1.5. cytoskeleton
1.5.1. summary?
1.5.1.1. network of fibers
1.5.1.2. organizes structures and activities
1.5.1.3. intracellular organelle transport
1.5.2. component(s)?
1.5.2.1. microtubules
1.5.2.1.1. made of?
1.5.2.2. intramediate filaments
1.5.2.3. microfilaments
1.5.3. function(s)?
1.6. extracellular components
1.6.1. coordinate cellular activities
2. Chapter 1
2.1. OIEMIE
2.1.1. Organization
2.1.2. Information
2.1.2.1. genes
2.1.2.1.1. program protein production
2.1.2.1.2. are transcribed into mRNAs
2.1.2.1.3. gene expression
2.1.3. Energy & Matter
2.1.3.1. transferred & transformed
2.1.4. Interactions
2.1.4.1. emergent properties
2.1.4.1.1. new ones result from interactions amongst components at the lower levels
2.1.4.2. systems biology
2.1.4.2.1. model dynamic behavior of biological systems by studying the interactions among the system's parts.
2.1.5. Evolution
2.1.5.1. prokaryotic
2.1.5.1.1. lack membrane enclosed organelles
2.1.5.2. eukaryotic
2.1.5.2.1. membrane enclosed organelles
2.1.5.2.2. DNA in nucleus
2.1.5.3. domains
2.1.5.3.1. bacteria
2.1.5.3.2. archaea
2.1.5.3.3. eukarya
2.2. OQHEC
2.2.1. Observation
2.2.2. Question
2.2.2.1. focus on expermental variable
2.2.2.2. should be guided by Observations
2.2.3. Hypothesis
2.2.3.1. possible explanation for the question
2.2.4. Experiment
2.2.4.1. process to test Hypothesis
2.2.4.2. experimental controls
2.2.4.2.1. positive control
2.2.4.2.2. negative control
2.2.5. Conclusion
2.2.5.1. evidence based deduction about Hypthesis
2.3. data
2.3.1. quantitative
2.3.1.1. numerical measurements
2.3.2. qualitative
2.3.2.1. recorded descriptions
2.4. reasoning
2.4.1. inductive
2.4.1.1. derive generalizations from large # of observations
2.4.2. deductive
2.4.2.1. if-then
2.4.2.2. logic flows from general to specific
2.4.3. theory
2.4.3.1. broad in scope
2.4.3.2. spins off many new hypothesis
2.5. feedback regulation
2.5.1. process regulated by its output or end product
3. Chapter 8
3.1. anabolic
3.1.1. require energy
3.2. catabolic
3.2.1. breaking things down
3.2.2. release energy
3.3. energy
3.3.1. used to do work
3.3.2. forms of energy?
3.3.2.1. kinetic
3.3.2.1.1. thermal
3.3.2.1.2. mechanical
3.3.2.1.3. electrical
3.3.2.2. potential
3.3.2.2.1. structural
3.3.2.2.2. chemical
3.3.3. work
3.3.3.1. move matter against opposing forces
3.3.3.1.1. cell
3.3.4. 1st law of thermodynamics
3.3.4.1. principle of conservation of energy
3.3.4.2. energy cannot be created or destroyed
3.3.4.3. transformation
3.3.4.3.1. only some of it is useable, rest gets lost in unharness-able ways like heat or diffusion
3.3.4.3.2. plants "transform" light to chemical energy
3.3.4.3.3. spontaneous
3.3.4.3.4. endorgonic
3.3.4.3.5. equilibrium
3.3.4.4. entropy
3.3.4.4.1. measure of disorder or randomness
3.3.4.4.2. organisms may decrease entropy as long as the total entropy of the universe increases
3.3.4.4.3. organisms are islands of low entropy in an increasingly random universe
4. Chapter 4
4.1. Think of a mnemonic for 7 functional groups
4.1.1. HCC SPAM
4.1.1.1. Break down the mnemonic
4.1.1.1.1. Hydroxyl
4.1.1.1.2. Carbonyl
4.1.1.1.3. Carboxyl
4.1.1.1.4. Sulfhydryl
4.1.1.1.5. Phosphate
4.1.1.1.6. Amino
4.1.1.1.7. Methyl
5. Chapter 7
5.1. Structure
5.1.1. Fluid mosaics
5.1.1.1. Lipids & proteins
5.2. Function
5.2.1. Selective permeability
5.2.1.1. Passive transport
5.2.1.1.1. No energy investment
5.2.1.2. Active transport
5.2.1.2.1. ATP used to move solutes against their gradients
5.2.1.3. Bulk transport
5.2.1.3.1. Exocytosis
5.2.1.3.2. Endocytosis