GMAW for Manufacturing-Semi Automatic

Get Started. It's Free
or sign up with your email address
GMAW for Manufacturing-Semi Automatic by Mind Map: GMAW for Manufacturing-Semi Automatic

1. Assessment

1.1. GMAW WPQ-1G

1.1.1. Single Vee Groove W/Backing Base Metal Preparation 3/8" to 1/2"

1.1.1.1. Mill Scale Removed

1.1.1.2. Root Edge Maintained

1.1.1.3. Safety Precautions Followed

1.1.2. Single Vee Groove W/Backing Fit-up 3/8" to 1/2"

1.1.2.1. Tacks on ends and center of backing outside weld.

1.1.2.2. No Standoff from Backing

1.1.2.3. Runoff tabs suitable

1.1.2.4. Proper Root Opening

1.1.2.5. Tacks acceptable

1.1.3. Single Vee Groove W/Backing Root Pass, 3/8" to 1/2", 1G, GMAW

1.1.3.1. within limits of WPS

1.1.3.2. Free of Undercut > 1/32" deep

1.1.3.3. No Excess Convexity

1.1.3.4. Fused too all edges and backing

1.1.4. Single Vee Groove W/Backing Fill and Cap, 3/8" to 1/2", GMAW

1.1.4.1. Reinforcement VT before grinding

1.1.4.2. Fill Layers free of deep valleys/notches

1.1.4.3. Performed per WPS

1.1.4.4. Interpass Temp OK

1.1.4.5. Maximum Bead width followed.

1.1.4.6. Meets D1.1 Visual and Destructive Test requirements

1.2. Written Exam-SENSE

1.2.1. Safety Theory

1.2.1.1. 100% Required

1.2.2. Welding Symbol Theory

1.2.3. GMAW Theory

1.2.4. Welding Inspection Theory

2. Theory

2.1. Safety

2.1.1. Welding Safety Overview

2.1.1.1. Hazards Unique to Welding Overview

2.1.1.2. Hazards Unique to Welding - GTC Shop Specific

2.1.1.3. Typical Shop Safety Precautions-Non-Welding Related

2.1.2. Area Safety

2.1.2.1. Hazards around you.-Be Aware of your Surroundings

2.1.2.2. Housekeeping-Avoiding Trip Hazards

2.1.2.3. Hood Down, you can’t see-Know what's around you

2.1.2.4. Working at Heights-Fall Protection Basics

2.1.2.5. Moving Machinery Hazards-Pinch Points

2.1.2.6. Workers Around You-Protect yourself and Others.

2.1.2.7. Fire Safety Intro.

2.1.3. Welding PPE

2.1.3.1. Safety Glasses

2.1.3.2. Clothing

2.1.3.3. Gloves

2.1.3.4. Hood

2.1.3.5. Respirator

2.1.4. Fumes and Gases

2.1.4.1. Gases-Ozone

2.1.4.1.1. Highest welding Aluminum

2.1.4.1.2. Generated from Arc/Light

2.1.4.2. Gases-Hex Chrome

2.1.4.2.1. From Welding/Grinding Stainless Steel

2.1.4.2.2. Also in some paint.

2.1.4.3. Gases-Carbon Monoxide

2.1.4.4. Gases-Inert Gas Accumulation

2.1.4.5. When is a respirator a good idea

2.1.4.6. When is a Respirator Required

2.1.4.7. Removing the Hazard-Ventilation

2.1.4.8. Some Suggestions

2.1.4.8.1. OSHA recommends welders adhere to these best practices: The welding surface should be cleaned to remove coatings that might add another toxic element to the process. Examples would be solvent residue or paint. Welders should position themselves to avoid breathing in the welding gases and fumes. One way is to simply stay upwind when welding outside or in open environments. The ventilation, whether it be natural or forced, should allow for fresh air to move freely. Such air movement reduces gases and fumes in the workspace. Welding outside or in an open area doesn’t mean there’s adequate ventilation. If the work area lacks ventilation or a formal exhaust system, the welder should take advantage of natural drafts to avoid gases and fumes. If there is an exhaust system, it can remove gases and fumes from the worker’s breathing zone. The system should be configured, so the following components are near the plume source: The fume hoods, vacuum nozzles, and fume extractor guns. This enables the system to take away the max amount of gases and fumes from the area. If there is a flexible or portable exhaust system in place, place it so the gases and fumes move away from the welder. Exhaust ports should not be near the other workers. Substitute for a welding type that’s less toxic or one that generates fewer fumes. Welders should not weld in confined spaces or spaces with no ventilation. If these practices and recommended ventilation don’t reduce exposure sufficiently, welders should wear respiratory protection to ensure their safety while on the job.

2.1.5. Hot Work Permits and Fire Watches

2.1.5.1. Understand the Fire Hazards

2.1.5.2. Inspecting the Area

2.1.5.3. Fire Extinguisher Types and Uses

2.1.5.4. Hot Work Permits and their Use

2.1.6. Confined Space Work

2.1.6.1. Confined Space Entry Requirements

2.1.6.2. Confined Space Hazards

2.1.6.3. Types of Confined Spaces

2.1.6.4. How Welding Changes Rules

2.1.6.5. OSHA Rules

2.1.7. Material Handling

2.1.7.1. Know the ratings for lifting equipment

2.1.7.2. Know the weight

2.1.7.3. Know the CG

2.1.7.4. Know the lifting Equipment Capacities.

2.1.7.5. Rigging and Lifting Training Required

2.1.7.6. Crush Hazards

2.1.8. Electrical Safety

2.1.8.1. The chance of shock can be reduced by proper grounding and insulation.

2.1.8.2. Tool Shock hazards exist from power tools

2.1.8.3. Welding Shock hazards exist when welding

2.1.8.3.1. Mig Gun usually weld insulated

2.1.8.3.2. Spatter buildup can make nozzle or neck "Hot"

2.1.8.4. Reaction to Shock

2.1.8.4.1. Be carful on ladders

2.1.8.4.2. Underneath objects-Head Injuries

2.1.9. Power Tool Safety

2.1.9.1. Power Tools VS Flesh

2.1.9.2. Electrical Shock Hazards

2.1.10. Cylinder Storage and Handling

2.1.10.1. Handling Safely-Secured When using.

2.1.10.2. Handling Safely-Storage Caps When Moving

2.1.10.3. Handling Safety-Moving

2.1.10.4. Handling Safely-Lifting

2.1.10.5. Storage Rules-Ventilation Issues

2.1.10.5.1. Do not store in closed areas with poor ventilation

2.1.10.6. Storage Rules-Properly Secured

2.1.10.7. Storage Rules-Oxy and Fuel Separated

2.1.10.8. Cylinder Safety Devices

2.1.11. Safety Data Sheets

2.1.11.1. HAZCOM Standard Overview

2.1.11.2. Employees have a right to see the SDS.

2.1.11.3. MSDS's are stored in a specific location

2.1.11.4. Your company’s safety rules ARE NOT listed on the SDS.

2.1.11.5. Allowable Limits are listed on the SDS.

2.1.11.6. Firefighting Measures are listed on the SDS

2.1.11.7. Recommended PPE is listed on the SDS

2.1.11.8. Hazards are listed on the SDS

2.1.11.9. SDS stands for Safety Data Sheet

2.1.12. Safety Planning and Emergency Action Plans

2.1.12.1. Emergency Action plans assist with informing everyone regarding specific actions to be taken in unsafe situations.

2.1.13. Cutting and Welding on Containers

2.1.13.1. Explosion Hazards from Containers

2.1.13.2. Chemical Hazards from Containers

2.1.14. Oxy-Fuel Welding and Cutting Safety

2.1.14.1. Securing Equipment After Use

2.1.14.2. Equipment Setup Precautions

2.1.14.3. Fire Hazards

2.1.14.4. Cylinder Hazards

2.1.14.5. Oxy and Accelerated Burning

2.1.14.6. Acet Pressure

2.1.15. Safety Review

2.1.15.1. Quiz-Short on Topics Names.

2.1.16. Safety Quiz

2.1.16.1. 30 Question Quiz

2.2. MFG-Intro to Drawings-Online

2.2.1. Introduction to Blueprints-Skills 180-DWG-1001

2.2.1.1. Title Block Info

2.2.1.2. Notes

2.2.1.3. Drawing Sizes

2.2.1.4. Zones

2.2.1.5. BOM

2.2.1.6. Tolerances

2.2.2. Drawing Terminology-Skills 180-DWG-1002

2.2.2.1. Points

2.2.2.2. Lines

2.2.2.3. Planes

2.2.2.4. Angles

2.2.2.5. Square and perpendicular

2.2.2.6. Arcs, Circles, Tangent points

2.2.3. Engineering Drawing Views-Skills 180-DWG-1003

2.2.3.1. Isometric- Not for dimensions

2.2.3.2. Isometric to Orthographic

2.2.3.3. Projections-The Glass Box

2.2.3.4. 1st and 3rd angle USA vs the world.

2.2.3.5. 6 Possible "Views"

2.2.3.6. Front, Top, side most common

2.2.3.7. Section Views Plane and other section.

2.2.3.8. Rotated Views

2.2.4. Drawing Line Types-Skills 180-DWG-1004

2.2.4.1. Lines-Straight, Curved and Broken

2.2.4.2. Visible

2.2.4.3. Hidden

2.2.4.4. Center

2.2.4.5. Phantom

2.2.4.6. Dimension

2.2.4.7. Extension

2.2.4.8. Leader

2.2.5. Drawings Dimensions and Tolerances-Skills 180-DWG-1005

2.2.5.1. Dimension Types

2.2.5.2. Tolerance Locations

2.2.5.3. ANSI standard- Mention

2.2.5.4. Everything is NOT perfect.

2.3. MFG-Welding Symbols

2.3.1. Symbol Overview

2.3.1.1. Why are they Needed

2.3.1.2. What information is shared

2.3.1.3. AWS "MAP"

2.3.2. The Reference Line and Arrow

2.3.2.1. Always Required

2.3.2.2. Can be a welding symbol without anything else

2.3.2.3. Arrow Side and Other Side

2.3.2.4. Arrow Direction on pcs not symmetrical

2.3.3. The Weld Symbol vs the Welding Symbol

2.3.3.1. Intro AWS Standard

2.3.3.2. Use Proper Terminology but don’t get hung up on it.

2.3.3.3. One Cannot exist without the other

2.3.3.4. One can exist without the other.

2.3.4. Weld Symbols-Fillets and Groove Welds

2.3.4.1. Vee and Bevel Groove

2.3.4.2. Arrow pointing for single PC prepared.

2.3.4.3. J and U groove

2.3.4.4. Flare Vee and Flare Bevel

2.3.4.5. Square Groove

2.3.4.6. Backing, Back Welds, and Back Gouging

2.3.4.7. When is it CJP

2.3.4.8. Fillet Symbol-Vert to left

2.3.4.9. Fillet, may be used with Groove

2.3.4.10. Fillet, Size, Length, Pitch Intro

2.3.4.11. Groove Depth and Throat Intro

2.3.5. Weld Sizes and Dimensions.

2.3.5.1. Sizes to the left

2.3.5.2. Lengths to the right

2.3.5.3. What if no dimensions

2.3.5.4. Read the Notes

2.3.5.5. Flare joints are special

2.3.5.6. Unequal Legs are special

2.3.5.7. Other countries may detail throat vs leg for fillets.

2.3.6. Contour Symbols

2.3.6.1. Flat

2.3.6.2. Convex

2.3.6.3. Concave

2.3.6.4. Finishing Methods

2.3.6.5. Considered Supplem. Symbols

2.3.7. Finishing Symbols

2.3.7.1. Machine

2.3.7.2. Roll

2.3.7.3. Grind

2.3.7.4. Etc….

2.3.8. Supplementary Symbols

2.3.8.1. Field Weld

2.3.8.2. Weld all round

2.3.8.3. Melt Through

2.3.8.4. Insert

2.3.8.5. Backing

2.3.8.6. Contour

2.3.9. Assess previous Topics

2.3.10. Multiple Operations

2.3.10.1. Nearest Arrow to Farthest

2.3.10.2. May be referenced in Tail - Back Weld vs Backing Weld

2.3.10.3. May Include Inspection Steps

2.3.11. Plug and Slots

2.3.11.1. Dia/Length

2.3.11.2. Depth of Fill

2.3.12. Resistance Welds

2.3.12.1. Spot

2.3.12.2. Seam

2.3.12.3. Numbers and Spacing

2.3.13. AWS A2.4 Overview

2.3.13.1. Has Requirements for drawing

2.3.13.2. More Detail than Class

2.3.13.3. Where purchased

2.3.13.4. Changes over the years-Old Field Weld

2.3.14. Drawing Welding Symbols

2.3.14.1. See the Standard

2.3.14.2. Draw Fillet Welds with Size-Exercise

2.3.14.3. Draw PJP Grooves with depth of Prep-Exercise

2.3.14.4. Draw Multiple Operation-Exercise

2.3.15. Practical Exercise-Reading and Applying

2.3.15.1. USE AWS SENSE Print for welding Sample or verbally explain

2.3.15.2. Select one joint from sample print and sketch

2.3.15.3. Select one joint sketch and create symbol

2.3.15.4. Show Weldcad program

2.4. MFG-GMAW Process Theory-Online Pre-Requisite

2.4.1. GMAW History and Overview-Miller Openbook Online

2.4.1.1. Been around awhile

2.4.1.2. Multiple Transfer Modes

2.4.1.3. Semi-Automatic

2.4.1.4. AWS GAMW Definition

2.4.1.5. New technology Variations

2.4.1.6. Advantages over other processes

2.4.1.7. Applications

2.4.1.8. Machine and Automatic Welding

2.4.1.9. GMAW Circuit/Electrical Terms

2.4.2. GMAW Equipment-Miller Openbook Online

2.4.2.1. Power Source

2.4.2.2. Wire Feeder

2.4.2.3. Gas Supply

2.4.2.4. Gun and Cables

2.4.2.5. CV vs CC

2.4.2.6. Inverter

2.4.2.7. Transformer/Rectifier

2.4.2.8. Duty Cycle

2.4.3. Basic Electricity

2.4.3.1. AC/DC and Current Flow

2.4.3.2. Basic Circuit

2.4.3.3. Primary vs Secondary Power

2.4.3.4. Voltage/Amperage/Resistance

2.4.3.5. Conductors and Insulators

2.4.3.6. HERTZ

2.4.3.7. OHMS Law

2.4.4. GMAW Variables

2.4.4.1. Travel Angles

2.4.4.2. Travel Speed

2.4.4.3. Voltage

2.4.4.4. Wire Feed Speed

2.4.4.5. Electrode Extension

2.5. GMAW Process Detailed Overview

2.5.1. GMAW Process Safety

2.5.1.1. Electric Shock

2.5.1.2. Light

2.5.1.3. Strain

2.5.1.4. Fumes

2.5.1.5. Gas Suffocation

2.5.1.6. Wire through hand

2.5.1.7. Installing Wire

2.5.1.8. Compressed Gas Cylinders

2.5.1.9. Hot Parts/Nozzle

2.5.2. GMAW Process Description

2.5.2.1. When developed

2.5.2.2. Where Developed

2.5.2.3. Capabilities

2.5.2.4. Advantages

2.5.2.5. Disadvantages

2.5.2.6. Uses and Applications

2.5.2.7. Transfer Modes

2.5.2.8. Shielding Gases

2.5.3. GMAW Process Equipment-With Machine

2.5.3.1. Power Sources

2.5.3.2. Cables

2.5.3.3. Gun

2.5.3.4. Gas

2.5.3.5. Ground

2.5.3.6. Filler Metal

2.5.3.7. Tips

2.5.3.8. Liners

2.5.3.9. Nozzles

2.5.3.10. Drive Rolls

2.5.3.11. Connector Types

2.5.4. GMAW Consumables

2.5.4.1. Carbon Steel Wires and Gases

2.5.4.2. Aluminum Wires and Gases

2.5.4.3. Stainless Steel Wires and Gases

2.5.5. GMAW Process Variables

2.5.5.1. Voltage and What is Affected

2.5.5.2. WFS and What is Affected

2.5.5.3. Inductance and What is Affected

2.5.5.4. CTWD and What is Affected

2.5.5.5. Contact Tip Size and What is Affected

2.5.5.6. Gas Cup Dia. and What is Affected

2.5.5.7. Gas Type and What is Affected

2.5.5.8. Gas Flow Rate and What is Affected

2.5.5.9. Drive Roll Tension/Type and What is Affected

2.5.5.10. Travel Angle and What is Affected

2.5.5.11. Travel Speed and What is Affected

2.5.5.12. Work Angle What is Affected

2.5.5.13. Transfer Modes and What is Affected

2.5.5.14. Pulsing and What is Affected

2.5.5.15. TRIM/ARC Adjust and What is Affected

2.5.6. GMAW Welding Techniques

2.5.6.1. Getting Comfortable

2.5.6.2. Being able to See

2.5.6.3. Low energy (Sheet Metal) VS High Energy (Plate)

2.5.6.4. Push VS Pull

2.5.6.5. Weaving

2.5.6.6. CTWD

2.5.6.7. Electrode Classification Differences

2.5.6.8. Whipping/Jacking

2.6. GMAW-Transfer Modes

2.6.1. Short Circuit

2.6.1.1. Thick Material may be a problem

2.6.1.2. Puddle Freezes Quickly

2.6.1.3. Low Heat Input

2.6.1.4. Good for Root Passes

2.6.1.5. Works on any Machine

2.6.2. Globular

2.6.2.1. Large Globules of metal across arc

2.6.2.2. Weld Spatter an Issue

2.6.2.3. Out of position welds difficult-Metal Falls before reaching puddle.

2.6.2.4. Deep Penetration with CO2 shielding.

2.6.2.5. Works on any machine with enough power

2.6.3. Spray

2.6.3.1. High Deposition Rate and Efficiency

2.6.3.2. Small Droplets of metal across arc

2.6.3.3. Weld Spatter Not an Issue

2.6.3.4. Out of position welds difficult-large Fluid Puddle-HOT.

2.6.3.5. Smooth Bead Profile

2.6.3.6. Works on any machine with enough power (Transition Current)

2.6.3.7. Needs large percentage of ARGON

2.6.4. Spray Pulsed

2.6.4.1. Capable of very stable arc at very low wire feed speeds.

2.6.4.2. Customizable arc characteristics on many machines

2.6.4.3. Weld Spatter Not an Issue

2.6.4.4. Out of position welds possible. Compare to SC.??

2.6.4.5. Smooth Bead Profile

2.6.4.6. Requires a special power source and wire feeder.

2.6.4.7. Needs large percentage of ARGON since based on Spray???

2.6.4.8. High Deposition Rate and Efficiency when properly set.

2.6.5. Manufacturers Waveforms

2.6.5.1. RMD

2.6.5.2. Rapid Arc

2.6.5.3. Precision Pulse

2.6.5.4. SST

2.6.5.5. Sometimes an easier way to do things that are already possible.

2.6.6. What is Synergenic

2.6.6.1. WFS and Other Settings Matched based on input.

2.6.6.2. Can Often be "tuned" for specific characteristics.

2.6.6.3. Voltage Setting Knob "tunes" the arc.

2.6.6.4. Older machines-Everything had to be set.

2.7. Gen-Base Metal Preparation-Types of joints

2.7.1. Joint Types

2.7.1.1. Butt Joint Description

2.7.1.2. Tee Joint Description

2.7.1.3. Lap Joint Description

2.7.1.4. Corner Joint Description

2.7.1.5. Edge Joint Description

2.7.2. Weld Types

2.7.2.1. Fillet Welds

2.7.2.2. Groove Welds

2.7.2.3. Plug and Slot Welds

2.7.2.4. Surfacing Welds

2.7.2.5. Seal Welds

2.7.3. Groove Types

2.7.3.1. Square Groove Joints

2.7.3.2. Bevel Groove

2.7.3.3. Vee Groove

2.7.3.4. J Groove

2.7.3.5. U groove

2.7.3.6. Flare Groove (Bevel and Vee)

2.7.4. Joint Terms

2.7.4.1. Root Opening/Gap

2.7.4.2. Root Face/Land

2.7.4.3. Bevel Face

2.7.4.4. Bevel Angle

2.7.4.5. Groove Angle/Included Angle

2.7.4.6. Radius

2.7.4.7. Misalignment/Hi-Lo

2.7.5. Metal Types

2.7.5.1. Carbon Steel-Overview

2.7.5.2. 300 Series SS-Overview

2.7.5.3. Aluminum-Overview

2.7.5.4. Duplex Alloys-Overview

2.7.5.5. Nickel Alloys-Overview

2.8. Metallurgy-Mechanical Properties

2.8.1. Tensile

2.8.1.1. Pulling Apart

2.8.1.2. Filler Metal Classifications

2.8.1.3. Typical Tests

2.8.2. Hardness

2.8.2.1. Related to Tensile in Steel

2.8.2.2. Can be changed by heat treatment depending on chemistry-CS

2.8.2.3. Can Be Changed by Cold Working- Stainless Steel

2.8.2.4. Sometimes checked around weld areas.

2.8.3. Ductility

2.8.3.1. Bend vs break

2.8.3.2. improper matching Filler Metal may affect test results

2.8.4. Impact Resistance

2.8.4.1. Not always an issue

2.8.4.2. Affected by Heat Input

2.8.4.3. Impact Testing description.

2.8.5. Fatigue

2.8.5.1. Can be a concern for items cycled often-

2.8.5.2. Notches Make worse

2.8.5.3. Also see Creep

2.8.6. Thermal Conductivity

2.8.6.1. Affects Energy needed to weld

2.8.6.2. May change cracking tendencies

2.8.6.3. Preheat/Interpass

2.8.6.4. Low Thermal Conductivity might make position welds harder

2.8.7. Review how welding may affect mechanical properties of various materials

2.8.7.1. Tensile-Filler Metals

2.8.7.2. Hardness Filler Metal and Heat Input

2.8.7.3. Ductility-Filler Metal, Heat input in some cases, ,Defects

2.8.7.4. Impact Resistance-Heat Input

2.8.7.5. Fatigue-Notches/Contour

2.8.7.6. Thermal Conductivity-Affects Welding

2.8.8. Test for Mechanical Properties

2.8.8.1. Hardness Tests

2.8.8.2. Bend Tests

2.8.8.3. Impact Tests

2.8.8.4. Tensile Tests

2.9. Weld Quality-Inspection Methods Overview

2.9.1. Visual

2.9.1.1. Equipment

2.9.1.2. Techniques

2.9.1.3. Interpretation

2.9.1.4. Discontinuities found

2.9.1.5. Advantages and Disadvantages

2.9.2. Liquid Penetrant

2.9.2.1. Equipment

2.9.2.2. Techniques

2.9.2.3. Interpretation

2.9.2.4. Discontinuities found

2.9.2.5. Advantages and Disadvantages

2.9.3. Magnetic Particle

2.9.3.1. Equipment

2.9.3.2. Techniques

2.9.3.3. Interpretation

2.9.3.4. Discontinuities found

2.9.3.5. Advantages and Disadvantages

2.9.4. Radiography

2.9.4.1. Equipment

2.9.4.2. Techniques

2.9.4.3. Interpretation

2.9.4.4. Discontinuities found

2.9.4.5. Advantages and Disadvantages

2.9.5. Ultrasonic

2.9.5.1. Equipment

2.9.5.2. Techniques

2.9.5.3. Interpretation

2.9.5.4. Discontinuities found

2.9.5.5. Advantages and Disadvantages

2.9.6. QUIZ

2.10. Weld Quality-Weld Defects-Definitions and Causes

2.10.1. Cracks

2.10.1.1. Description

2.10.1.2. Causes

2.10.1.3. Methods for Detection

2.10.1.4. Preventing

2.10.1.5. Types of Cracks

2.10.2. Incomplete Fusion

2.10.2.1. Description

2.10.2.2. Causes

2.10.2.3. Methods for Detection

2.10.2.4. Preventing

2.10.3. Incomplete Penetration

2.10.3.1. Description

2.10.3.2. Causes

2.10.3.3. Methods for Detection

2.10.3.4. Preventing

2.10.4. Overlap

2.10.4.1. Description

2.10.4.2. Causes

2.10.4.3. Methods for Detection

2.10.4.4. Preventing

2.10.5. Porosity

2.10.5.1. Description

2.10.5.2. Causes

2.10.5.3. Methods for Detection

2.10.5.4. Preventing

2.10.6. Quiz

2.10.6.1. Describe possible causes

2.10.6.2. Name discontinuities from written description

2.10.7. Slag Inclusion

2.10.7.1. Description

2.10.7.2. Causes

2.10.7.3. Methods for Detection

2.10.7.4. Preventing

2.10.8. Tungsten Inclusion

2.10.8.1. Description

2.10.8.2. Causes

2.10.8.3. Methods for Detection

2.10.8.4. Preventing

2.11. Aluminum-What’s So Special

2.11.1. Aluminum Oxide

2.11.1.1. It makes Aluminum corrosion resistant

2.11.1.2. Hard-Used in Abrasives

2.11.1.3. Room Temperature Formation and Quickly

2.11.1.4. High Melting Temperature

2.11.1.5. Overcome with Cleaning

2.11.2. Hot Shortness

2.11.2.1. High Heat Input can be an issue

2.11.2.2. No Visible Indicator it is going to "break"

2.11.2.3. Autogenous welds may be worse

2.11.2.4. Some alloys more susceptible than others- 6000 series more than 5000 series

2.11.2.5. Crack Sensitive

2.11.3. Notch Sensitive

2.11.3.1. Sometimes Mechanical Fastening is better than welding

2.11.3.2. In high Fatigue Application, Scratches a problem

2.11.3.3. Lower number of cycles till failure (endurance limit) than steel.

2.11.4. Thermal Conductivity

2.11.4.1. Energy may need to change when welding small parts due to heating.

2.11.4.2. More Energy to Heat up

2.11.4.3. Hot to touch while welding. Propping on part.

2.11.4.4. Low Melting point a problem when saturated

2.11.5. Alloying Elements and Foreign Materials

2.11.5.1. Some alloys are not weldable. May Fail unexpectedly

2.11.5.2. Contamination of filler metals easily occurs

2.11.5.3. Contamination can cause cracking

2.11.6. May Be Heat Treated/Tempered

2.11.6.1. Welding Changes Heat Treatment

2.11.6.2. May not bend/form correctly if welded.

2.12. Aluminum GMAW Intro

2.12.1. Special Equipment Needed…Only for Wire Feeding

2.12.1.1. Push Pull Guns

2.12.1.2. Drive Rolls

2.12.1.3. Spool Guns

2.12.2. Handles light Aluminum Oxide OK

2.12.2.1. Should Clean

2.12.2.2. Not as critical as GTAW but best to clean

2.12.2.3. Hand Brushing works well

2.12.2.4. No foreign material

2.12.3. Wire may Deform

2.12.3.1. Drive Roll Pressure lower

2.12.3.2. Spool Guns put more curve in wire.

2.12.3.3. Pushing a "rope".

2.12.3.4. U Shape Drive rolls

2.12.3.5. 4XXX vs 5XXX series may be different.

2.12.4. Special Sizing for Tip

2.12.4.1. Reflective puddle heats tip

2.12.4.2. Tip Diameter may be different

2.12.5. No color from heating

2.12.5.1. Hot Shortness!

2.12.5.2. Shiny reflective puddle

2.12.6. Welds Great out of position.

2.12.6.1. Low Melting Point is ok because of thermal conductivity.

2.12.6.2. Small Pieces may get "saturated" with heat and then out of position harder.

2.12.6.3. Puddle Freezes Quick which is good. High Thermal Conductivity

2.12.7. Settings may need to be adjusted "on the fly"

2.12.7.1. Synergenic machines and adjust WFS while welding may help.

2.12.7.2. Cold at beginning but small parts heat quickly

2.12.7.3. Mass of part determines how long it takes to get too hot

2.12.7.4. Preheating at beginning may reduce need for adjustment

2.12.8. Spool Guns Are difficult to handle

2.12.8.1. Curve in the wire may wear tip faster.

2.12.8.2. Small Spools, Awkward for some welds

2.12.8.3. Wire runs out quickly

2.12.9. Push Pull Guns work great but $$

2.12.9.1. a little bigger than conventional.

2.12.9.2. Adjust WFS on Handle with some/most

2.12.9.3. As comfortable as a conventional gun.

2.12.10. Transfer Modes

2.12.10.1. Pulsed

2.12.10.2. Short Circuit Not Needed for position welds or thin materials.

2.12.10.3. Spray

2.12.11. Aluminum Grades

2.12.11.1. Filler Metal "matching"

2.12.11.2. Weldability Differences

2.12.11.3. Aluminum Numbering System Overview

3. Lab

3.1. GMAW Pad Welds

3.1.1. GMAW Pad Welding Flat Position

3.1.1.1. Bead Placement

3.1.1.2. Getting Comfortable

3.1.1.3. Push/Pull

3.1.1.4. Dry Runs

3.1.1.5. Maintain CTWD and Angles

3.1.2. GMAW Pad Welding Horizontal

3.1.2.1. Bead Placement

3.1.2.2. Getting Comfortable

3.1.2.2.1. Position pad high enough to get comfortable.

3.1.2.2.2. Rest non dominant arm if possible.

3.1.2.3. Dry Runs

3.1.2.3.1. Watch work.travel angle

3.1.2.3.2. Start uncomfortable, finish comfortable

3.1.2.3.3. No right/wrong way but tray suggestions from teacher.

3.1.2.4. Push/Pull

3.1.2.4.1. Either for Horizontal.

3.1.2.4.2. May change contour or penetration profile

3.1.2.4.3. Try to do the same thing for a layer for grading.

3.1.2.5. Modifies Work Angle

3.1.2.5.1. Aim up slightly to overcome gravity

3.1.2.5.2. May be able to see from top looking down.

3.1.2.5.3. Weld Spatter may increase in Nozzle

3.1.2.5.4. May need welding hat...More Sparks going up

3.1.2.6. Maintains CTWD

3.1.2.7. Maintains Travel Angle

3.1.2.8. Avoiding overlap

3.1.3. GMAW Pad Welding Vertical

3.1.3.1. Importance of Heat Input and Base Metal Temperature

3.1.3.2. Different Bead Placement for uh/vs downhill

3.1.3.3. Travel Fast and Hot Downhill

3.1.3.4. Travel Slow and Cool Uphill

3.1.3.5. Understands Weld Metal Heating and Cooling related to Sagging.

3.1.3.6. Downhill Pad Welding

3.1.3.7. Uphill Pad Welding

3.1.4. GMAW Pad Welding Overhead

3.1.4.1. Getting Comfortable

3.1.4.2. Holding Gun

3.1.4.3. Push/Pull

3.1.4.4. Importance of reducing Splatter

3.2. GMAW Tee Joints-Flat and Horizontal Only

3.2.1. GMAW, Carbon Steel, Tee-Thin-Horiz, Short Circuit Transfer

3.2.1.1. Performs cut and etch on Push vs Pull on 1/4" Plate

3.2.1.2. Consistent CTWD

3.2.1.3. Ability to perform multipass welds

3.2.1.4. Consistent Travel

3.2.1.5. Consistent Travel Speed from start to finish

3.2.1.6. Weld Meets Visual Acceptance Criteria

3.2.1.7. Sets Machine Correctly

3.2.1.8. Ability to perform 3/16" to 1/4" single pass welds

3.2.1.9. Practices PUSH and PULL

3.2.1.10. Verifies the Filler Metal

3.2.1.11. Sets Gas Flow Rate in accordance with the WPS

3.2.1.12. Replaces Worn Parts if Needed

3.2.1.13. Consistent Work Angle from Start to finish

3.2.1.14. Follows Safety Precautions

3.2.1.15. Equal Leg Size on Fillet weld

3.2.2. GMAW, Carbon Steel, Tee-Thin-Horiz-Spray

3.2.2.1. Equal Leg Size on Fillet weld

3.2.2.2. Consistent Work Angle from Start to finish

3.2.2.3. Consistent Travel Speed from start to finish

3.2.2.4. Consistent CTWD

3.2.2.5. Replaces Worn Parts if Needed

3.2.2.6. Weld Meets Visual Acceptance Criteria

3.2.2.7. Ability to perform 3/16" single pass welds

3.2.2.8. Consistent Travel Angle

3.2.2.9. Ability to perform multipass welds

3.2.2.10. Practices PUSH and PULL

3.2.2.11. Sets Gas Flow Rate in accordance with the WPS

3.2.2.12. Sets Machine Correctly

3.2.2.13. Verifies the Filler Metal

3.2.2.14. Follows Safety Precautions

3.2.3. GMAW, Carbon Steel, Tee-Thick-Horiz, Spray

3.2.3.1. Replaces Worn Parts if Needed

3.2.3.2. Observed Fusion/Penetration Difficulties with Lower Heat Input and Travel Angle

3.2.3.3. Verifies the Filler Metal

3.2.3.4. Sets Gas Flow Rate in accordance with the WPS

3.2.3.5. Practices PUSH and PULL

3.2.3.6. Weld Meets Visual Acceptance Criteria

3.2.3.7. Follows Safety Precautions

3.2.3.8. Equal Leg Size on Fillet weld

3.2.3.9. Consistent Work Angle from Start to finish

3.2.3.10. Consistent Travel Speed from start to finish

3.2.3.11. Consistent Travel Angle

3.2.3.12. Consistent Travel

3.2.3.13. Consistent CTWD

3.2.3.14. Sets Machine Correctly

3.2.3.15. Ability to perform multipass welds

3.2.3.16. Ability to perform 1/4" to 5/16" single pass welds

3.2.3.17. Cut, Etch, and Break Satisfactory

3.3. GMAW Lap Joints

3.3.1. GMAW Lap, Horizontal, , 3/16" to 1/4" (T)

3.3.1.1. Consistent CTWD

3.3.1.2. Follows Safety Precautions

3.3.1.3. Verifies the Filler Metal

3.3.1.4. Sets Gas Flow Rate in accordance with the WPS

3.3.1.5. Sets Machine Correctly

3.3.1.6. Ability to perform multipass welds

3.3.1.7. Consistent Travel Angle

3.3.1.8. Replaces Worn Parts if Needed

3.3.1.9. Ability to maintain top edge.

3.3.1.10. Equal Leg Size on Fillet weld +/- 1/16"

3.3.1.11. Ability to perform 3/16" to 1/4" single pass welds

3.3.1.12. Cut, Etch, and Break Satisfactory

3.3.1.13. Consistent Travel Speed from start to finish

3.3.1.14. Practices PUSH and PULL

3.3.1.15. Consistent Work Angle from Start to finish

3.3.1.16. Weld Meets Visual Acceptance Criteria

3.3.2. GMAW Lap, Vertical, Short Circuit, 3/16" to 1/4"

3.3.2.1. Replaces Worn Parts if Needed

3.3.2.2. Follows Safety Precautions

3.3.2.3. Ability to maintain front edge.

3.3.2.4. Equal Leg Size on Fillet weld +/- 1/16"

3.3.2.5. Welds Meets Visual Acceptance Criteria

3.3.2.6. Practices Uphill and downhill

3.3.2.7. Ability to perform multipass welds

3.3.2.8. Cut, Etch, and Break Satisfactory Comparing Uphill Vs Downhill)

3.3.2.9. Verifies the Filler Metal

3.3.2.10. Consistent CTWD

3.3.2.11. Consistent Travel Angle

3.3.2.12. Consistent Travel Speed from start to finish

3.3.2.13. Sets Gas Flow Rate in accordance with the WPS

3.3.2.14. Ability to perform 3/16" to 1/4" single pass welds

3.3.2.15. Avoids Excess Convexity with up to 220 IPM WFS with .035"

3.3.2.16. Consistent Work Angle from Start to finish

3.3.2.17. Sets Machine Correctly

3.3.3. GMAW Lap, Vertical, Pulsed, 3/16" to 1/4"

3.3.3.1. Consistent Travel Angle

3.3.3.2. Welds Meets Visual Acceptance Criteria

3.3.3.3. Practices Uphill and downhill

3.3.3.4. Sets Gas Flow Rate in accordance with the WPS

3.3.3.5. Ability to perform 3/16" to 1/4" single pass welds

3.3.3.6. Ability to maintain front edge.

3.3.3.7. Consistent CTWD

3.3.3.8. Consistent Travel Speed from start to finish

3.3.3.9. Ability to perform multipass welds

3.3.3.10. Verifies the Filler Metal

3.3.3.11. Cut, Etch, and Break Satisfactory Comparing Uphill Vs Downhill)

3.3.3.12. Equal Leg Size on Fillet weld +/- 1/16"

3.3.3.13. Avoids Excess Convexity with up to 250 IPM WFS with .035"

3.3.3.14. Consistent Work Angle from Start to finish

3.3.3.15. Sets Machine Correctly-Uses Arc Trim/Adjust

3.3.3.16. Replaces Worn Parts if Needed

3.3.3.17. Follows Safety Precautions

3.3.4. GMAW Lap, Thick on Thin Trial

3.3.4.1. Meets all other Lap Requirements

3.3.4.2. Avoids melting through thin pc

3.3.5. GMAW Lap, Thin on Thick Trial with 3mm fillet

3.3.5.1. Meets all other Lap Requirements

3.3.5.2. Avoids weld metal above top of thin pc more than 1/32"

3.3.6. GMAW Lap, Thin on Thin

3.3.6.1. Avoids weld metal above top of thin pc more than 1/32"

3.3.6.2. Same Lap requirements

3.3.6.3. Avoids Melt Through

3.3.7. GMAW Lap, 3/16" to 1/4" Overhead

3.3.7.1. Consistent Travel Speed from start to finish

3.3.7.2. Follows Safety Precautions

3.3.7.3. Ability to perform multipass welds

3.3.7.4. Consistent Travel Angle

3.3.7.5. Ability to perform 3/16" to 1/4" single pass welds

3.3.7.6. Cut, Etch, and Break Satisfactory Comparing Uphill Vs Downhill)

3.3.7.7. Ability to maintain front edge.

3.3.7.8. Avoids Excess Convexity with up to 250 IPM WFS with .035"

3.3.7.9. Replaces Worn Parts if Needed

3.3.7.10. Equal Leg Size on Fillet weld +/- 1/16"

3.3.7.11. Sets Gas Flow Rate in accordance with the WPS

3.3.7.12. Sets Machine Correctly

3.3.7.13. Consistent CTWD

3.3.7.14. Verifies the Filler Metal

3.3.7.15. Consistent Work Angle from Start to finish

3.3.7.16. Welds Meets Visual Acceptance Criteria

3.3.7.17. Practices head to side and in front of joint.

3.4. GMAW-Simulated Vee Grooves

3.4.1. Simulated Vee Groove Base Metal Prep

3.4.1.1. Cleans Mills Scale

3.4.1.2. Selects proper material

3.4.2. Simulated Vee Groove Fit-up

3.4.2.1. Sets at 30 Degrees

3.4.2.2. Welds Simulated "Backing" pass in Flat 3/16 to 5/16" wide.

3.4.3. Simulated Vee Groove 1st Pass, Flat

3.4.3.1. Flat contours, fusion to sides

3.4.3.2. Push and Pull

3.4.4. Simulated Vee Groove Flat, GMAW Spray

3.4.4.1. Consistent CTWD

3.4.4.2. can correct variations in fill

3.4.4.3. Consistent Work Angle from Start to finish

3.4.4.4. Consistent Fill depth through length

3.4.4.5. Consistent Travel Speed from start to finish

3.4.4.6. Follows Safety Precautions

3.4.4.7. Consistent Travel Angle

3.4.4.8. Sets Gas Flow Rate in accordance with the WPS

3.4.4.9. Verifies the Filler Metal

3.4.4.10. Avoids Valleys in Layers

3.4.4.11. Cap Profile meets D1.1

3.4.4.12. Replaces Worn Parts if Needed

3.4.4.13. Compensates for stickout on root pass.

3.4.4.14. Ability to perform multipass welds

3.4.4.15. Weld Meets Visual Acceptance Criteria

3.4.4.16. Practices PUSH and PULL

3.4.4.17. Cut, Etch, and visual satisfactory

3.4.4.18. Sets proper parameters

3.4.4.19. Maintains CTWD

3.4.5. Simulated Vee Groove Horizontal, GMAW Pulsed or Short Circuit,

3.4.5.1. Free of overlap.

3.4.5.2. Cap Profile meets D1.1

3.4.5.3. Maintains CTWD

3.4.5.4. Follows Safety Precautions

3.4.5.5. Sets proper parameters

3.4.5.6. Avoids Valleys in Layers

3.4.5.7. can correct variations in fill

3.4.5.8. Ability to perform multipass welds

3.4.5.9. Compensates for stickout on root pass.

3.4.5.10. Consistent Travel Speed from start to finish

3.4.5.11. Cut, Etch, and visual satisfactory

3.4.5.12. Consistent CTWD

3.4.5.13. Consistent Travel Angle

3.4.5.14. Consistent Fill depth through length

3.4.5.15. Weld Meets Visual Acceptance Criteria

3.4.5.16. Replaces Worn Parts if Needed

3.4.5.17. Sets Gas Flow Rate in accordance with the WPS

3.4.5.18. Practices PUSH and PULL

3.4.5.19. Verifies the Filler Metal

3.4.5.20. Consistent Work Angle from Start to finish

3.4.5.21. Stacks from Bottom to top.

3.4.6. Simulated Vee Groove Overhead, GMAW Pulsed or Short Circuit

3.4.6.1. Practices PUSH and PULL

3.4.6.2. Consistent Fill depth through length

3.4.6.3. Weld Meets Visual Acceptance Criteria

3.4.6.4. Cap Profile meets D1.1

3.4.6.5. can correct variations in fill

3.4.6.6. Cut, Etch, and visual satisfactory

3.4.6.7. Follows Safety Precautions

3.4.6.8. Avoids Valleys in Layers

3.4.6.9. Replaces Worn Parts if Needed

3.4.6.10. Consistent CTWD

3.4.6.11. Consistent Travel Angle

3.4.6.12. Avoids tip damage from spatter buildup. Tunes out as much spatter as possible/

3.4.6.13. Consistent Travel Speed from start to finish

3.4.6.14. Maintains CTWD

3.4.6.15. Sets proper parameters

3.4.6.16. Verifies the Filler Metal

3.4.6.17. Consistent Work Angle from Start to finish

3.4.6.18. Ability to perform multipass welds

3.4.6.19. Compensates for stickout on root pass.

3.4.6.20. Sets Gas Flow Rate in accordance with the WPS

3.4.7. Simulated Vee Groove Vertical, GMAW Pulsed or Short Circuit, Uphill

3.4.7.1. Cut, Etch, and visual satisfactory

3.4.7.2. Avoids Valleys in Layers

3.4.7.3. Replaces Worn Parts if Needed

3.4.7.4. Ability to perform multipass welds

3.4.7.5. Understands effects of cooler base metal for bead profile.

3.4.7.6. Consistent Work Angle from Start to finish

3.4.7.7. can correct variations in fill

3.4.7.8. Sets Gas Flow Rate in accordance with the WPS

3.4.7.9. Weld Meets Visual Acceptance Criteria

3.4.7.10. Sets proper parameters

3.4.7.11. Maintains CTWD

3.4.7.12. Consistent Travel Speed from start to finish

3.4.7.13. Cap Profile meets D1.1

3.4.7.14. Push or Perp.

3.4.7.15. Compensates for stickout on root pass.

3.4.7.16. Consistent Fill depth through length

3.4.7.17. Consistent Travel Angle

3.4.7.18. Follows Safety Precautions

3.4.7.19. Verifies the Filler Metal

3.4.7.20. Consistent CTWD

3.5. GMAW Butt Joints

3.5.1. GMAW-CS-Single Pass Butt Joints-Flat with Back Gouging

3.5.1.1. Equal Leg Size on Fillet weld

3.5.1.2. Ability to perform Single pass welds With Acceptable Quality

3.5.1.3. Consistent CTWD

3.5.1.4. Selects correct Material

3.5.1.5. Consistent CTWD

3.5.1.6. Weld Meets Visual Acceptance Criteria

3.5.1.7. Practices PUSH and PULL

3.5.1.8. Consistent Travel Speed from start to finish

3.5.1.9. Consistent Work Angle from Start to finish

3.5.1.10. Sets Machine Correctly

3.5.1.11. Consistent Travel Angle

3.5.1.12. Sets Gas Flow Rate in accordance with the WPS

3.5.1.13. Replaces Worn Parts if Needed

3.5.1.14. Verifies the Filler Metal

3.5.1.15. Follows Safety Precautions

3.5.2. GMAW -CS-Single Pass Butt Joints Horizontal with Back Gouging

3.5.2.1. Consistent Travel Angle

3.5.2.2. Weld Meets Visual Acceptance Criteria

3.5.2.3. Consistent Travel Speed from start to finish

3.5.2.4. Consistent CTWD

3.5.2.5. Sets Machine Correctly

3.5.2.6. Replaces Worn Parts if Needed

3.5.2.7. Follows Safety Precautions

3.5.2.8. Melt Through on Root Side

3.5.2.9. Consistent Work Angle from Start to finish

3.5.2.10. Practices PUSH and PULL

3.5.2.11. Verifies the Filler Metal

3.5.2.12. Ability to perform Single pass welds With Acceptable Quality

3.5.2.13. Selects correct Material

3.5.2.14. Avoids underfill on top side of bead

3.5.2.15. Sets Gas Flow Rate in accordance with the WPS

3.5.3. GMAW-CS-Single Pass Butt Joint-Overhead with Back Gouging

3.5.3.1. Follows Safety Precautions

3.5.3.2. Consistent Work Angle from Start to finish

3.5.3.3. Consistent Travel Angle from start to stop-Drag only

3.5.3.4. Consistent CTWD

3.5.3.5. Verifies the Filler Metal

3.5.3.6. Weld Meets Visual Acceptance Criteria

3.5.3.7. Root penetration

3.5.3.8. Selects correct Material

3.5.3.9. Ability to perform Multipass Groove Welds with Acceptable Quality

3.5.3.10. Backgouged to Sound Metal

3.5.3.11. Understands vision restrictions overhead

3.5.3.12. Sets Machine Correctly

3.5.3.13. Sets Gas Flow Rate in accordance with the WPS

3.5.3.14. Consistent Travel Speed from start to finish

3.5.3.15. Replaces Worn Parts if Needed

3.5.4. GMAW-CS-Single Pass Butt Joint-Vertical With Back Gouging

3.5.4.1. Consistent Travel Speed from start to finish

3.5.4.2. Ability to perform Multipass Groove Welds with Acceptable Quality

3.5.4.3. Sets Gas Flow Rate in accordance with the WPS

3.5.4.4. Replaces Worn Parts if Needed

3.5.4.5. Verifies the Filler Metal

3.5.4.6. Follows Safety Precautions

3.5.4.7. Sets Machine Correctly

3.5.4.8. Consistent CTWD

3.5.4.9. Practices PUSH

3.5.4.10. Consistent Work Angle from Start to finish

3.5.4.11. Consistent Travel Angle from Start to Finish-Push

3.5.4.12. Root Penetration

3.5.4.13. Selects correct Material

3.5.4.14. Weld Meets Visual Acceptance Criteria

3.5.4.15. Acceptable profile without grinding.

3.5.5. GMAW-CS-Single Vee Groove Flat, 3/8", With Backing

3.5.5.1. Consistent Work Angle from Start to finish

3.5.5.2. Replaces Worn Parts if Needed

3.5.5.3. Ability to perform Multiple pass welds With Acceptable Quality

3.5.5.4. Understands fit-up requirements for Joint with Backing

3.5.5.5. Consistent CTWD

3.5.5.6. Consistent Travel Speed from start to finish

3.5.5.7. Sets Machine Correctly

3.5.5.8. Follows Safety Precautions

3.5.5.9. Fuses to backing and bevel edges.

3.5.5.10. Verifies the Filler Metal

3.5.5.11. Verifies Proper Fit-up

3.5.5.12. Selects correct Material

3.5.5.13. Weld Meets Visual Acceptance Criteria

3.5.5.14. Sets Gas Flow Rate in accordance with the WPS

3.5.5.15. Consistent Travel Angle

3.5.5.16. Understands vision restrictions overhead

3.5.6. GMAW-CS-Single Vee Groove Horizontal, 3/8", With Backing

3.5.6.1. Consistent Travel Speed from start to finish

3.5.6.2. Consistent Travel Angle

3.5.6.3. Understands fit-up requirements for Joint with Backing

3.5.6.4. Positions joint to allow comfortable welding.

3.5.6.5. Consistent CTWD

3.5.6.6. Selects correct Material

3.5.6.7. Sets Machine Correctly

3.5.6.8. Consistent Work Angle from Start to finish

3.5.6.9. Fuses to backing and bevel edges.

3.5.6.10. Replaces Worn Parts if Needed

3.5.6.11. Sets Gas Flow Rate in accordance with the WPS

3.5.6.12. Verifies the Filler Metal

3.5.6.13. Ability to perform Multiple pass welds With Acceptable Quality

3.5.6.14. Weld Meets Visual Acceptance Criteria

3.5.6.15. Understands vision restrictions overhead

3.5.6.16. Verifies Proper Fit-up

3.5.6.17. Follows Safety Precautions

3.6. GMAW Aluminum Lab

3.6.1. Pad Welds-Flat and Vertical

3.6.2. Lap Joints 1/8" Material, Plat

4. Schedule Possibilities

4.1. Tues and Thurs

4.1.1. 4 to 8 PM

4.1.2. 5 to 9 PM

4.2. Mon and Thur

4.2.1. 4 to 8 PM

4.2.2. 5 to 9 PM

4.3. Saturday

4.3.1. 0700 till 1530

5. Greene Technology Center