Búsqueda de referencia Io = f(T)

Get Started. It's Free
or sign up with your email address
Búsqueda de referencia Io = f(T) by Mind Map: Búsqueda de referencia Io = f(T)

1. Wang - Analytical modelling of partial shading and different orientation of photovoltaic modules

1.1. Nakanishi - Modelling and operation of a 10 kW photovoltaic power generator using equivalent electric circuit method.

1.1.1. W. De Soto, S. A. Klein, and W. A. Beckman. Improvement and validation of a model for photovoltaic array performance. Solar Energy, 80(1):78–88, January 2006

1.1.1.1. Messenger, R.A., Ventre, J., 2004. Photovoltaic Systems Engineering, second ed. CRC Press LLC, Boca Raton, FL.

1.1.1.1.1. No hay referencia directa

1.1.2. F. Nakanishi, T. Ikegami, K. Ebihara, S. Kuriyama, and Y. Shiota, “Model- ing and operation of a 10 kW photovoltaic power generator using equiva- lent electric circuit method,” in Proc. Conf. Record 28th IEEE Photovoltaic Spec. Conf., Sep. 2000, pp. 1703–1706.

1.1.2.1. No hay referencia directa

2. Villalva - Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays

2.1. W. De Soto, S. A. Klein, and W. A. Beckman, “Improvement and validation of a model for photovoltaic array performance,” Solar Energy, vol. 80, no. 1, pp. 78–88, Jan. 2006.

2.1.1. repetido

2.2. Q. Kou, S. A. Klein, and W. A. Beckman. A method for estimating the long-term performance of direct-coupled PV pumping systems. Solar Energy, 64(1-3):33–40, September 1998

2.2.1. No hay referencia directa

2.3. Messenger, R.A., Ventre, J., 2004. Photovoltaic Systems Engineering, second ed. CRC Press LLC, Boca Raton, FL.

2.3.1. No hay referencia directa

2.4. F. Nakanishi, T. Ikegami, K. Ebihara, S. Kuriyama, and Y. Shiota, “Model- ing and operation of a 10 kW photovoltaic power generator using equiva- lent electric circuit method,” in Proc. Conf. Record 28th IEEE Photovoltaic Spec. Conf., Sep. 2000, pp. 1703–1706.

2.4.1. No hay referencia directa

2.5. J. Crispim, M. Carreira, and R. Castro, “Validation of photovoltaic elec- trical models against manufacturers data and experimental results,” in Proc. Int. Conf. Power Eng., Energy Elect. Drives, POWERENG, 2007, pp. 556–561.

2.5.1. No hay referencia directa

2.6. K. H. Hussein, I. Muta, T. Hoshino, and M. Osakada, “Maximum photo- voltaic power tracking: An algorithm for rapidly changing atmospheric conditions,” in Proc. IEE Proc.-Generation, Transmiss. Distrib., Jan. 1995, vol. 142, pp. 59–64.

2.6.1. VACHTSEVANOS, G., and KALAITZAKIS, K.: ‘A hybrid photo- voltaic simulator for utility interactive studies’, IEEE Trans., 1987, EC-2, (2), pp. 227-231

2.6.1.1. No hay referencia directa

3. Farivar - A New Approach for Solar Module Temperature Estimation Using the Simple Diode Model

3.1. J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes. Hoboken, NJ: Wiley, 2005, pp. 253–255.

3.1.1. Referencia equivocada

4. Michael - Band gap energy in Silicon

4.1. Physics of semiconductor devices Sze, S. M. New York [etc.] : John Wiley & Sons, cop. 1981

4.1.1. En la 2nd edición no se encontró información

5. Wilcox - Estimating Saturation Current Based on Junction Temperature and Bandgap

5.1. S. M. Sze and Kwok K. Ng, Physics of Semiconductor Devices, New York: John Wiley & Sons, Inc.,. 2006, p. 15

5.1.1. Referencia expresión Eg(T)

6. Ley de Richardson, 1901

6.1. Ecuación Richardson-Dushmann

6.2. http://es.wikipedia.org/wiki/Owen_Willans_Richardson

6.3. http://en.wikipedia.org/wiki/Owen_Willans_Richardson

6.4. Owen 1912 - The laws of pohotoelectric action and the uniatry theory of light

6.5. C.R. Crowell, The Richardson constant for thermionic emission in Schottky barrier diodes, Solid-State Electronics, Volume 8, Issue 4, April 1965, Pages 395-399, ISSN 0038-1101, DOI: 10.1016/0038-1101(65)90116-4

6.6. Owen 1929 - Thermionic phenomena and the laws wich govern them. Nobel Lecture, Decembre 12, 1929