Chemical Reactions

Chemical Reactions Mind Map - TRACY ZHOU (SCH3U)

Get Started. It's Free
or sign up with your email address
Chemical Reactions by Mind Map: Chemical Reactions

1. Balancing Chemical Equations

1.1. Chemical Equation: representation of chemical reactions using symbols and formulas (Reactants → Products)

1.1.1. Word Equation: describes reaction with words

1.1.1.1. EX. Sodium Hydroxide + Hydrochloric Acid → Sodium Chloride + Water

1.1.2. Skeleton Equation: describes reaction with chemical formulas

1.1.2.1. EX. NaOH(aq) + HCl(aq) → NaCl(aq) + H2O(l)

1.2. Subscripts are used in an equation to describe the state of the element or compound

1.2.1. aqueous (aq)

1.2.2. solid (s)

1.2.3. liquid (l)

1.2.4. gas (g)

1.2.5. heat

1.2.6. hv light

1.3. Law of Conservation of Mass: the numbers of each kind of atom are equal on both sides of the equation

1.3.1. Numbers in front of chemical formulas are called coefficients and they represent the number of molecules EX. 2H2O2(l) → 2H2O(l) + O2(g)

1.4. The MINOH rule: "MI NOH EVERYTHING" helps balance equations

1.4.1. M - Metals first

1.4.2. I - polyatomic Ions second

1.4.3. N - Non-metals third

1.4.4. O - Oxygen fourth

1.4.5. H - Hydrogen last

1.4.6. *the position of oxygen and hydrogen can be swapped

2. Types of Reactions

2.1. Synthesis Reaction: two elements or compounds combine to form a new compound

2.1.1. A + B → AB

2.1.2. EX. 3H2(g) + N2(g) → 2NH3(g)

2.2. Decomposition Reaction: a compound breaks down into smaller compounds or elements

2.2.1. AB → A + B

2.2.2. ELEMENTS EX. 2H2O(l) → 2H2(g) + O2(g)

2.2.3. COMPOUNDS EX. CaCO3(s) → CaO(s) + CO2(g)

2.3. Combustion Reaction: a fuel reacts with oxygen producing oxides, water and solid carbon

2.3.1. Fuel + Oxygen → Oxides

2.3.1.1. Fuel + O2(g) → CO2(g) + H2O(g)

2.3.2. Complete Combustion Reaction: a combustion reaction with an excess amount of oxygen

2.3.2.1. EX. CH4(g) + 2O2(g) → CO2(g) + 2H2O(g)

2.3.3. Incomplete Combustion Reaction: a combustion reaction with a limited amount of oxygen

2.3.3.1. Fuel + O2(g) → C(s) + CO(g) + H2O(g)

2.3.3.2. EX. 4CH4(g) + 5O2(g) → 2C(s) + 2CO(g) + 8H2O(g)

2.3.4. Combustion of Non-Hydrocarbons: non-hydrocarbons form oxides

2.3.4.1. Metals burned in oxygen produce stable metal oxides

2.3.4.1.1. EX. Mg(s) + O2(g) → MgO

2.3.4.2. Non-metals burned in oxygen will produce stable non-metal oxides

2.3.4.2.1. EX. S(g) + O2(g) → SO2(g)

2.4. Single Displacement Reaction: a metal or halogen in a compound will displace another metal or halogen

2.4.1. A + CB → AC + B

2.4.2. Metals: a more reactive metal will displace a less reactive metal in a compound otherwise no reaction will occur

2.4.2.1. The Activity Series of Metals can be used to determine whether a metal is more reactive than another or not

2.4.2.2. EX. Fe(s) + CuSo4(aq) → Cu(s) + FeSO4(aq)

2.4.2.3. EX. Cu(s) + NaBr2(aq) → no reaction

2.4.3. Halogens: a more reactive halogen will displace a less reactive halogen otherwise no reaction will occur

2.4.3.1. Halogen Activity Series: F>Cl>Br>I

2.4.3.2. EX. Cl2(g) + 2LiBr(aq) → 2LiCl(aq) Br2(l)

2.4.3.3. EX. I2(g) + NaF(aq) → no reaction

2.4.4. Treat Hydrogen as a metal

2.4.4.1. EX. Ca(s) + 2HCl(aq) → CaCl2(aq) + H2(g)

2.4.5. Treat acids and water as ionic compounds

2.4.5.1. EX. Mg(s) + 2H2O(l) → Mg(OH)2(aq) + H2(g)

2.5. Double Displacement Reaction: exchange of cations between two ionic compounds, often creating one of the products insoluble and forms a precipitate

2.5.1. AB + CD → AD + CB

2.5.2. EX. NaCl(aq) + AgNO3(aq) → AgCl(s) + NaNO3(aq)

2.6. Neutralization Reaction: a double displacement reaction where an acid and a base react to form an ionic compound (salt) and water

2.6.1. ACID + BASE → Salt + Water

2.6.2. EX. HCl(aq) + NaOH(aq) → NaCl(aq) + H2O(l)

3. Nomenclature

3.1. 1. Simple Binary Ionic

3.1.1. NAME → Metal + Non-Metal-ide

3.1.2. EX. BeCl2 → Beryllium Chloride

3.2. 2. Multiple Valences - Transition Metals (Stock System)

3.2.1. NAME → Metal (roman numeral) + Non-Metal-ide

3.2.2. EX. Fe2O3 → Iron (III) Oxide

3.3. 3. Multiple Valences - Limited to two valences (Latin Prefixes)

3.3.1. NAME →

3.3.1.1. Latin Prefixes for Metals

3.3.1.1.1. Antimony

3.3.1.1.2. Copper

3.3.1.1.3. Lead

3.3.1.1.4. Chromium

3.3.1.1.5. Iron

3.3.1.1.6. Tin

3.3.1.2. Suffixes for two valences

3.3.1.2.1. -IC is used to indicate a higher valence

3.3.1.2.2. EX. CuF2 → Cupric Fluoride

3.3.1.2.3. -OUS is used to indicate a lower valence

3.3.1.2.4. EX. Ferrous Oxide

3.4. 4. Polyatomic Ionic: ions are made of more than one atom but behave as a single ion

3.4.1. NICK the CAMEL ate a CLAM for SUPPER in PHEONIX = NO3^-, CO3^2-, ClO3^-, SO4^2-, PO4^3-

3.4.1.1. They all end in "-ATE" (Nitrate, Carbonate, Chlorate, Sulfate, Phosphate)

3.4.1.2. Halogens follow "CLAM" and end in "-ATE" as well

3.4.1.3. BUT when the number of oxygen atoms change, the name changes

3.4.1.3.1. +1 Oxygen → per___ate

3.4.1.3.2. STANDARD → "-ate"

3.4.1.3.3. -1 Oxygen → "-ite"

3.4.1.3.4. -2 Oxygen → hypo___ite

3.4.2. Irregular Polyatomics

3.4.2.1. Acetate → C2H3O^-

3.4.2.2. Cyanide → CN^-

3.4.2.3. Peroxide → O2^2-

3.4.2.4. Ammonium → NH4^+

3.4.2.5. Hydroxide → OH^-

3.4.3. NAME → Cation + Anion with proper ending according to the formula

3.4.3.1. EX. KClO4 → Potassium Perchlorate

3.4.3.2. EX. SnSO3 → Tin (II) Sulphite

3.4.3.3. EX. HgNO3 → Mercury Nitrate

3.4.3.4. EX. Al(BrO)3 → Aluminum Hypobromite

3.5. 5. Binary Compound with Hydrogen

3.5.1. NAME →

3.5.1.1. If Hydrogen is the least electronegative than it goes first

3.5.1.2. EX. HCl → Hydrogen Chloride

3.5.1.3. If Hydrogen is the most electronegative then is goes second and the ending becomes "-ide"

3.5.1.4. EX. NaH → Sodium Hydride

3.6. 6. Binary Acids (aq)

3.6.1. NAME →

3.6.1.1. H-Non-Metal(aq)

3.6.1.2. EX. HF(aq)

3.6.1.3. Hydro(Non-Metal)ic Acid

3.6.1.4. EX. Hydrofluoric Acid

3.6.1.5. Use subscript "(aq)" to indicate that it is aqueous

3.7. 7. Bases: usually polyatomic ionic compounds with hydroxide ion(s) in them

3.7.1. NAME → Metal + Hydroxide

3.7.2. EX. Cu(OH) → Cupric Hydroxide

3.7.3. EX. Mg(OH) → Magnesium Hydroxide

3.8. 8. Oxyacids: polyatomic radicals bound to Hydrogen

3.8.1. Polyatomic Radicals

3.8.1.1. "-ate" becomes "-ic"

3.8.1.2. "-ite" becomes "-ous"

3.8.1.3. The number of oxygen Atoms change name...

3.8.1.3.1. +1 → per___ic acid

3.8.1.3.2. STANDARD → ___ic acid

3.8.1.3.3. -1 → ___ous acid

3.8.1.3.4. -2 → hypo___ous acid

3.8.2. NAME → Polyatomic Radical + H^+ → Oxyacid

3.8.3. EX. HClO4(aq) → Perchloric Acid

3.8.3.1. EX. H2CO3(aq) → Carbonic Acid

3.8.4. EX. H2SO3(aq) → Sulfurous Acid

3.8.4.1. EX. H3PO2(aq) → Hypophosphorous Acid

3.9. 9. Acid Salt : Hydrogen joins a polyatomic ion and reduces the charge by 1 for each Hydrogen added

3.9.1. NAME → Cation + Hydrogen + Anion

3.9.2. EX. NaHCO3 → Sodium Hydrogen Carbonate

3.9.3. EX. (NH4)2HPO3 → Ammonium Hydrogen Phosphite

3.10. 10. Covalent/Molecular

3.10.1. NAME → (Prefix)non-metal + (Prefix)non-metal-ide

3.10.2. EX. P2O5 → Diphosphorus Pentoxide

3.10.3. Ex. N2O3 → Dinitrogen Trioxide

3.10.4. Prefixes

3.10.4.1. mono-

3.10.4.1.1. do not need "mono-" on the first element

3.10.4.2. di-

3.10.4.3. tri-

3.10.4.4. tetra-

3.10.4.5. penta-

3.10.4.6. hexa-

3.10.4.7. hepta-

3.10.4.8. octa-

3.10.4.9. nona-

3.10.4.10. deca-

3.11. 11. Peroxides have one more oxygen than a normal oxide → [O2]^2-

3.11.1. NAME → Cation + Peroxide

3.11.2. EX. H2O2 → Hydrogen Peroxide

3.11.3. EX Li2O2 → Lithium Peroxide

3.12. 12. Additional Acids and Radicals

3.12.1. Cyanate → OCN^-

3.12.2. Permanganate → MnO4^-

3.12.3. Oxalate → C2O4^2-

3.12.4. Chromate → CrO4^2-

3.12.5. Dichromate → Cr2O7^2-

3.12.6. Arsenate → AsO4^3-

3.12.7. Arsenite → AsO3^3-

3.12.8. For acids, suffix becomes "-ic" or "-ous"

3.13. 13. Compounds when S replaces O

3.13.1. Use the prefix "thio"

3.13.2. NAME → Thio___

3.13.3. EX. MgS2O2 → Magnesium Thiosulfite

3.13.4. EX. KSCN → Potassium Thiocyanate