Get Started. It's Free
or sign up with your email address
Data Scientist by Mind Map: Data Scientist

1. 7. Feature Engineering

1.1. Baseline Model

1.2. Categorical Encodings

1.3. Feature Generation

1.4. Feature Selection

2. 5. Machine Learning

2.1. Introduction

2.1.1. How Model Works

2.1.2. Basic Data Exploration

2.1.3. First ML Model

2.1.4. Model Validation

2.1.5. Underfitting & Overfitting

2.1.6. Random Forests (Python | R)

2.1.7. scikit-learn

2.2. Intermediate

2.2.1. Handling Missing Values

2.2.2. Handling Categorical Variables

2.2.3. Pipelines

2.2.4. Cross-Validation (R)

2.2.5. XGBoost (Python | R)

2.2.6. Data Leakage

3. 1. Mathematics

3.1. Linear Algebra

3.2. Analytic Geometry

3.3. Matrix

3.4. Vector Calculus

3.5. Optimization

3.6. Regression

3.7. Dimensionality Reduction

3.8. Density Estimation

3.9. Classification

4. 3. Statics

4.1. Introduction to Statistics

4.2. Data Description

4.3. Random Samples

4.4. Sampling Distribution

4.5. Parameter Estimation

4.6. Hypotheses Testing (Python | R)

4.7. ANOVA (Python | R)

4.8. Reliability Engineering

4.9. Stochastic Process

4.10. Computer Simulation

4.11. Design of Experiments

4.12. Simple Linear Regression

4.13. Correlation

4.14. Multiple Regression (Python | R)

4.15. Nonparametric Statistics

4.15.1. Sign Test

4.15.2. The Wilcoxon Signed-Rank Test (R)

4.15.3. The Wilcoxon Rank Sum Test

4.15.4. The Kruskal-Wallis Test (R)

4.16. Statistical Quality Control

4.17. Basics of Graphs

5. 9. Data Visualization Tools

5.1. Excel VBA

5.2. BI (Business Intelligence)

5.2.1. Tableau

5.2.2. Power BI

5.2.3. Qlik View

5.2.4. Qlik Sense

6. 2. Probability

6.1. Introduction to Probability

6.2. 1D Random Variable

6.3. The function of One Random Variable

6.4. Joint Probability Distribution

6.5. Discrete Distribution

6.5.1. Binomial (Python | R)

6.5.2. Bernoulli

6.5.3. Geometric

6.6. Continuous Distribution

6.6.1. Uniform

6.6.2. Exponential

6.6.3. Gamma

6.7. Normal Distribution (Python | R)

7. 11. Other Points to Learn

7.1. Domain Knowledge

7.2. Communication Skill

7.3. Reinforcement Learning

7.4. Different Case Studies

7.4.1. Data Science at Netflix

7.4.2. Data Science at Flipkart

7.4.3. Project on Credit Card Fraud Detection

7.4.4. Project on Movie Recommendation, etc.

8. 4. Programming

8.1. Python

8.1.1. Python Basics

8.1.1.1. List

8.1.1.2. Set

8.1.1.3. Tuples

8.1.1.4. Dictionary

8.1.1.5. Function, etc.

8.1.2. NumPy

8.1.3. Pandas

8.1.4. Matplotlib/Seaborn, etc.

8.2. R

8.2.1. R Basics

8.2.1.1. Vector

8.2.1.2. List

8.2.1.3. Data Frame

8.2.1.4. Matrix

8.2.1.5. Array

8.2.2. dplyr

8.2.3. ggplot2

8.2.4. Tidyr

8.2.5. Shiny, etc.

8.3. DataBase

8.3.1. SQL

8.3.2. MongoDB

8.4. Other

8.4.1. Data Structure

8.4.2. Web Scraping (Python | R)

8.4.3. Linux

8.4.4. Git

9. 8. Natural Language Processing

9.1. Text Classification

9.2. Word Vectors

10. 10. Deployment

10.1. Microsoft Azure

10.2. Heroku

10.3. Google Cloud Platform

10.4. Flask

10.5. DJango

11. 6. Deep Learning

11.1. Artificial Neural Network

11.2. Convolutional Neural Network

11.3. Recurrent Neural Network

11.4. TensorFlow

11.5. Keras

11.6. PyTorch

11.7. A Single Neuron

11.8. Deep Neural Network

11.9. Stochastic Gradient Descent

11.10. Overfitting and Underfitting

11.11. Dropout Batch Normalization

11.12. Binary Classification